Telecoms, Datacoms, Wireless, IoT

WPA - will it plug 'wireless' security holes?

5 November 2003 Telecoms, Datacoms, Wireless, IoT

Security still remains a major obstacle in the successful implementation of wireless LANs. Past efforts to solve this, have not been entirely successful. There is, however, a new security mechanism set to change this. In this article, Graham Vorster, chief technology officer of Duxbury Networking, discusses the benefits of the recently introduced WPA technology.

Since the inception of wireless technology, security has been a major concern and inhibitor of widespread industry adoption.

The wireless LAN industry's first crack at security - 802.11 wireless equivalent privacy [WEP] has already - though somewhat prematurely - been branded as a failure. Jim Geier, author of 'Wireless LANs', recently commented that WEP is so easy to break it is like having a plastic lock on your door.

"Although WEP can keep casual snoopers from accessing a wireless LAN, companies need and can do much better," he says.

One of the key flaws of WEP is that its encryption keys are static rather than dynamic. The problem with this scenario is that once an IT administrator wants to update the keys, he or she has to visit each machine, which is not feasible when dealing with a big network.

Introducing WPA

At the end of last year, the Wireless Fidelity (Wi-Fi) Alliance announced Wi-Fi Protected Access (WPA), a standards-based security mechanism that eliminates most 802.11 security issues.

Based on the still to be ratified 802.11i standard, WPA will be integrated into products within the next few months.

According to the Wi-Fi Alliance, one of the key advantages of WPA is that it enables the implementation of open wireless LAN security in public areas and hot spots such as universities - this has in the past not been possible with WEP.

And to demonstrate just how serious they are about the implementation of WPA, the Wi-Fi Alliance has mandated that by the end of this year the security mechanism will be a requirement for all new Wi-Fi certifications.

How WPA works

WPA features both temporal key integrity protocol [TKIP] and 802.1x mechanisms, which provide dynamic key encryption and mutual authentication for mobile clients.

Unlike WEP, it counters hacker intrusions by generating periodic and unique encryption keys for each of its users.

Companies can, for example, use WPA to interface with an authentication server, such as RADIUS [remote authentication dial-in user service] using 802.1x with EAP.

However, in the case of SOHOs [small office, home office] WPA does not require an authentication server, due to the technology's ability to operate in 'preshared key mode'.

Similar to WEP, a user's preshared key must match the one stored at the access point. An access point then uses the preshared key for authentication. If the key matches, access is given to the wired side of the access point.

Who will benefit from WPA?

It is believed that WPA will benefit legacy equipment the most. Companies can install it via software upgrades to Wi-Fi certified access points. These access points will then support a mixed environment of client devices, ones implementing WPA and others that do not.

But, one of the key benefits of WPA is that it is forward compatible with the 802.11i standard. When finally ratified, this standard will include advanced encryption standards (AES) as an option, which is said to be stronger that RC4.

One downfall of AES is that it will probably require the replacement of a legacy point because of the need for higher performing processors. 802.11i will, therefore, be targeted at new equipment.

Undoubtedly WPA is not an interim solution but a long-term step. It is set to provide excellent security and can already be implemented on existing technology.

With the new hardware requirements of 802.11i, WPA is likely to be the solution that lasts until you move to the next generation of hardware.

For more information contact Graham Vorster, Duxbury Networking, 011 646 3323,

Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Otto Wireless reveals RAD new product line
29 July 2020, Otto Wireless , Telecoms, Datacoms, Wireless, IoT
As a world leader in the telecommunications field with over 39 years of innovation, a significant worldwide presence in over 150 countries and an installed base of more than 16 million network elements, ...

New benchmark in low-cost LTE to be released soon
29 July 2020, Otto Wireless , Telecoms, Datacoms, Wireless, IoT
SIMCom, represented locally by Otto Wireless Solutions, has expanded its family of SIM7600, LTE Cat. 1 devices, and is due to unveil a new flagship product, which is expected to take the 4G market by ...

Multi-sensor IoT module
29 July 2020, Electrocomp , Telecoms, Datacoms, Wireless, IoT
TDK announced worldwide availability of the InvenSense SmartBug, a compact, wireless multi-sensor solution designed for a plethora of commercial and consumer IoT applications. The out-of-the-box solution ...

Bluetooth SiP for wearables and medical devices
30 June 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
Nordic Semiconductor announced that Tangshan, China-based Tangshan Hongjia Electronic Technology has selected Nordic’s nRF52840 Bluetooth 5.2/Bluetooth Low Energy (Bluetooth LE) advanced multiprotocol ...

Adhesive mount combo antenna
30 June 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
The Taoglas MA256.A is a 3-in-1 adhesive mount combination antenna for use in cases requiring worldwide 4G coverage and GPS/GLONASS/BeiDou/Galileo for positioning. The MA256 has been designed to be mounted ...

Diodes for RF/microwave applications
30 June 2020, Hi-Q Electronics , Telecoms, Datacoms, Wireless, IoT
Skyworks’ broad portfolio of PIN, limiter, Schottky, and varactor diodes are ideal for WLAN, infrastructure, handset, Satcom (LNB/DBS-CATV), automotive, aerospace and defence, test and measurement, metering, ...

Small form factor 5G/4G antenna
30 June 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
The Taoglas Olympian II G45 is a low-profile, robust external 5G/4G antenna. The permanent mount antenna has a small form factor at only 48,5 mm tall and 50 mm in diameter. It is ideal for external use, ...

Dual-core wireless MCU
30 June 2020, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
The STM32WBx0 is a dual-core wireless MCU based on an Arm Cortex-M4 core running at 64 MHz (application processor) and an Arm Cortex-M0+ core at 32 MHz (network processor). The STM32WBx0 Value Line ...

30 June 2020, EBV Electrolink , Telecoms, Datacoms, Wireless, IoT
NXP Semiconductors announced its new MIFARE DESFire EV3 IC that ushers in next-generation performance, advanced security and seamless integration of mobile services for a new era of security and connectivity ...

Cellular chipset for global low-power IoT
30 June 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
The UBX-R5 Series from u-blox is a global multi-band cellular chipset that supports LPWA, LTE-M and NB-IoT technologies. It is optimised for IoT applications such as smart metering, telematics, tracking, ...