mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

Versatile ring tone generator finds usues in motor drivers and amplifiers
16 Feb 2000, Analogue, Mixed Signal, LSI

Linear Technology's LT1684 was specifically designed for OEM telephone equipment. Its function is to interface between the digital control logic and the high voltage analog phone line. When used in the design of a phone system, the LT1684 allows software to control the frequency , voltage and cadence of the ring signal.Because of similarities of application to telephone systems, the LT1684 ring tone chip finds itself at home in motor drives, digital input amplified speakers, alarm systems and sine wave UPS systems.

The LT1684 provides the tool set to easily implement a digital, pulse width modulated (PWM) signal to DC-coupled voltage converter (at high currents), while providing isolation, switching frequency filtering and output protection. Figure 1 is a system-level diagram of the LT1684 in action. By controlling a pair of external MOSFETs, the LT1684 provides up to ±240 V of smooth, clean output at up to 200 mA of output current. Higher output voltages are obtained by cascoding MOSFETs, while higher currents are readily achieved by using the LT1166 MOSFET automatic bias generator chip as a com-panion.

The circuit

Figure 2 shows its use in a digital PWM-to-ringing telephone converter. This is something like a high power, high voltage, isolated, output filtered D/A converter. Like its DAC counterpart, the LT1684 has a precision reference, switches and an output amplifier. Unlike its DAC counterpart, it includes post-conversion ripple filtering, isolation and a robust high voltage output.

In addition to the isolation, filtering and amplification, the LT1684 provides the gate-bias control and gate voltage protection for the two external MOSFETs. Providing such a plethora of functions from a single, monolithic IC requires the use of a somewhat tricky circuit. This circuit is arrived at by applying a circuit transformation to a simple filter circuit. See the basic 2nd order lowpass multiple feedback filter (MFB) circuit which looks somewhat like the filter/amplifier in Figure 3. The filter/amplifier components in Figure 2 are R3-R5 and C3 and C4. Looking backwards through the circuit transformation, these components, in fact, form the 2nd order MFB filter shown in Figure 3. The values chosen for these components in Figure 2 implement a 2nd order Butterworth MFB lowpass filter with a cutoff frequency of 100 Hz and a DC gain of 100. These were chosen to provide ±80 V of output swing with PWM duty factors of 10 to 90%, while filtering the 10 kHz PWM ripple to meet telephone specifications.

Figure 1;The LT1684 uses differential pulse width modulation to provide isolation for digitally controlled analog power solutions
Figure 1;The LT1684 uses differential pulse width modulation to provide isolation for digitally controlled analog power solutions

Stealing the LT1684 for use in other applications

The LT1684, used as shown in Figure 1, outputs a ring signal that meets Belcore specification. This means it can ring a phone 22 000 feet away. The LT1684 fits another role, where 22 000 feet of separation would be a nice minimum. This is the application of the LT1684 in the scalable power amplifier, as detailed in Figure 4. This amplifier can be used to drive motors, simulate the power company in sinewave UPS systems and operate large audio drivers. Because of its scalable nature, this design can be used at any power level. The circuit in Figure 4 is shown implementing a 5000 W bits-to-decibels converter.

When this converter is implemented with the appropriate audio drivers and enclosures, the output sound pressure level can be significant - so significant, in fact, that this author suggests giving it a wide berth of at least 22 000 feet.

Figure 2; Typical digital PWM-to-ringing telephone converter application
Figure 2; Typical digital PWM-to-ringing telephone converter application

Analog inputs welcome

The scalable amplification system detailed in Figure 4 can be driven with analog inputs while still maintaining full isolation. Such a system is detailed in Figure 5, where the analog input is filtered (to prevent aliasing) and converted to PWM. Figure 5 goes on to show the use of an RS485 differential driver to drive a twisted pair line. The receiver end of the twisted pair line is terminated with a resistor and put across the isolation barrier. This provides very good ESD protection on both ends of the line.

Conclusion

The LT1684 is useful in a wide variety of applications. It is a highly integrated solution for use in any system that requires digital control of high output voltage or high output power.

For further information contact Linear Technology's South African representative Multitech Electronics Corporation, (021) 674 4103.


  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • Accelerometer with high-accuracy temperature sensor
    28 August 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    The STMicroelectronics LIS2DTW12 combines a MEMS 3-axis accelerometer and a temperature sensor on a single die for use in space-constrained and battery-sensitive detectors such as shipping trackers, wearables ...
  • Miniature quartz crystal
    28 August 2019, Würth Elektronik eiSos, Analogue, Mixed Signal, LSI
    IQD Frequency Products has launched one of the world’s smallest quartz crystals, the IQXC-240, which measures just 1,2 x 1,0 mm with a height of only 0,33 mm. It is available in frequencies between 36 ...
  • Pressure and temperature sensor
    28 August 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    The MS5837-02BA pressure sensor module from TE Connectivity is an ultra-small, gel-filled pressure sensor optimised for both altimeter and barometer applications. Designed for consumer devices such as ...
  • Motion sensor with machine learning
    28 August 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    STMicroelectronics has integrated machine learning technology into its advanced inertial sensors to improve activity tracking performance and battery life in mobiles and wearables. The LSM6DSOX iNEMO ...
  • Low-power real-time clock
    31 July 2019, CST Electronics, Analogue, Mixed Signal, LSI
    The MAX31341B nanoPower real-time clock (RTC) from Maxim Integrated Products enables designers of space-constrained systems such as wearables, medical monitors, point-of-sale (POS) equipment and portable ...
  • Healthcare sensors for wearable devices
    31 July 2019, CST Electronics, Analogue, Mixed Signal, LSI
    Designers creating next-generation wearable health and fitness applications can reduce temperature measurement power with the MAX30208, as well as shrink optical solution size with the MAXM86161 from ...
  • MEMS timing solutions for aerospace/defence
    31 July 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    SiTime recently unveiled its Endura MEMS timing solutions for aerospace and defence applications such as field and satellite communications, precision GNSS, avionics, and space. The Endura products are ...
  • PCIe clock buffers
    31 July 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    Microchip Technology announced four new 20-output differential clock buffers that exceed PCIe (PCI Express) Gen 5 jitter standards for next-generation data centre applications. The ZL40292 (85Ω termination) ...
  • Impedance and potentiostat front end
    26 June 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    A new electrochemical and impedance measurement front end has been developed by Analog Devices to enable the next generation of vital sign monitoring devices and intelligent electrochemical sensors. The ...
  • ‘Industry’s fastest’ 12-bit ADC
    26 June 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    Texas Instruments introduced a new ultra-high-speed analog-to-digital converter (ADC) with what it claims are the industry’s widest bandwidth, fastest sampling rate and lowest power consumption. The ADC12DJ5200RF ...
  • Crystal oscillators for automotive systems
    26 June 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    Mercury Electronics Europe has announced a new range of wide operating temperature crystal oscillators that are suitable for use in automotive applications. The new surface mount HY series offers 15 ...
  • Automotive touchscreen controllers
    26 June 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    Microchip Technology has rolled out three new maXTouch touchscreen controllers and optimisation services which address the electromagnetic interference (EMI) and electromagnetic compatibility (EMC) challenges ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.