News


World's first continuous laser from standard silicon a major advance

9 March 2005 News

Details of the development of the world's first continuous all-silicon laser on a chip, using standard silicon manufacturing processes, have been disclosed in the 17 Feb edition of the scientific journal, Nature. The scientific breakthrough could help bring low-cost, high-quality lasers and optical devices to mainstream use in computing, communications and medical applications.

Scientists from Intel have used the so-called Raman effect and silicon's crystalline structure, to amplify light as it passes through it. When infused with light from an external source, the experimental chip produces a continuous, high-quality laser beam. While still far from becoming a commercial product, they said that the ability to build a laser from standard silicon could lead to inexpensive optical devices that move terabytes of data inside and between computers at the speed of light - ushering in a flood of new applications for high-speed computing.

Technical details

Building a Raman laser in silicon begins with etching a waveguide - a conduit for light on a chip. Silicon is transparent to infrared light so that when light is directed into a waveguide it can be contained and channelled across a chip. Like the first laser developed in 1960, the Intel researchers used an external light source to 'pump' light into their chip. As light is pumped in, the natural atomic vibrations in silicon amplify the light as it passes through the chip. This amplification - the Raman effect - is more than 10 000 times stronger in silicon than in glass fibres. Raman lasers and amplifiers are used today in the telecom industry and rely on kilometres of fibre to amplify light. By using silicon, Intel researchers were able to achieve gain and lasing in a silicon chip just a few centimetres in size.

A laser is widely considered to be any device that emits an intense, coherent beam of light (where the photons all have the same wavelength, phase, and direction). By coating the sides of the chip with a reflective thin-film material, similar to coatings used on high-quality sunglasses, the team was able to contain and amplify the light as it bounced back and forth inside the chip. As they increased the pump energy a critical threshold point was reached, where instantaneously, a very precise beam of coherent light (ie, laser) exited the chip.

Initially, they discovered increasing the light pump power beyond a certain point no longer increased amplification and eventually even decreased it. The reason was a physical process called 'two-photon absorption', which occurs when two photons from the pump beam hit an atom at the same time and knock an electron away. These excess electrons build up over time and collect in the waveguide until they absorb so much light that amplification stops.

Intel's breakthrough solution was to integrate a semiconductor structure, technically called a PIN (P-type - Intrinsic -N-type) device into the waveguide. When a voltage is applied to the PIN, it acts as a vacuum, and removes most of the excess electrons from the light's path. The PIN device combined with the Raman effect produces a continuous laser beam.

For more information and a copy of the paper can be found at www.intel.com/technology/sp.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...
Global semiconductor sales increase
News
The Semiconductor Industry Association (SIA) has announced global semiconductor sales were $57,0 billion during the month of April 2025, an increase of 2,5% compared to the March 2025.

Read more...
Avnet Abacus announced new president
Avnet Abacus News
Avnet Abacus has announced that Mario Merino will succeed Rudy Van Parijs as president of Avnet Abacus, effective 1 July 2025.

Read more...
Avnet Abacus wins multiple prestigious awards
Avnet Abacus News
The awards from Molex recognise outstanding performance, collaboration, and significant growth in the challenging market conditions of 2024.

Read more...
Components distribution slowdown Q1 2025
News
European components distribution (DMASS) experienced a continued slowdown in the first quarter 2025.

Read more...
Semiconductor sales increase 17% YoY
News
The Semiconductor Industry Association (SIA) recently announced global semiconductor sales were $54,9 billion during the month of February 2025, an increase of 17,1% compared to the February 2024 total.

Read more...
Silicon Labs – Q1 results
News
Silicon Labs, a leading innovator in low-power wireless, recently reported financial results for the first quarter, which ended April 5, 2025.

Read more...
Strengthening industry through strategic partnerships at KITE 2025
Specialised Exhibitions News
The KwaZulu-Natal Industrial Technology Exhibition is not just an exhibition, it is a powerhouse of industry collaboration where visitors and exhibitors gain access to authoritative insights, technical expertise, and high-impact networking opportunities.

Read more...
Solar Youth Project calls on industry to step up
News
With the second cohort completed training and the first cohort returning for their final module, host companies are urgently needed to turn the training into a long-term opportunity.

Read more...
Conlog powers SA’s future with national smart meter rollout
News
Conlog recently secured the RT29-2024 contract from National Treasury, which is seen to be a major milestone towards modernising SA’s utility infrastructure.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved