News


Tomorrow's chips naturally

4 May 2005 News

Visionaries more than half a century ago imagined machines capable of growth, self-repair and self-replication. By digitally mimicking biological tissue's properties, researchers recently demonstrated a platform for autonomous computer systems.

"There are three ways to model hardware on self-organising biology," says Juan-Manuel Moreno, coordinator of the POEtic project. "They are development, learning and evolution - respectively known to biologists as ontogenesis, epigenesis and phylogenesis. All three models are based on a one-dimensional description of the organism, the genome."

In the early 1990s, computer scientists tested systems that mimic the development of an individual as directed by their genetic code. Then they started to use artificial intelligence to copy the processes of learning, as influenced by an individual's genetic code and their environment. "But until our project, nobody had succeeded in bringing together all three models in a single piece of hardware," adds Moreno.

In May 2004, the partners received the first POEtic chips. Each one included a specially developed microprocessor, designed to run evolutionary algorithms, and a basic programmable unit. "The electronic substrate in this unit is like a living molecule, made up of various elements or cells," says Moreno.

Each cell can communicate with the environment (through sensors and actuators) and with neighbouring cells (through bi-directional channels), thus executing a function.

Though each cell has the same basic structure, it can acquire different functionalities - much like cells in a living organism. This flexibility comes from the organisation of the electronic cells into three layers. The genotype plane is like a digital genome, containing a full description of the organism. The configuration plane transforms the genome into a configuration string, which directly controls the processing unit of the phenotype plane.

Early simulations showed these substrate features would allow the chips to simulate anything. "By building and testing the chips, we proved the concept of adaptive and dynamic hardware," says Moreno. "They are adaptive because we can modify the system's basic parameters and structure. And they are dynamic because these changes can be done autonomously and in realtime." Other chips can be modified in this way, but this can take hours or days using field-programmable gate arrays (FPGAs).

Aeronautic and automotive companies have expressed interest in the project's findings. Both sectors would welcome the chance to organise and reconfigure systems in realtime, as well as to have self-repair features and fail-safe parallel processing. "However, they would not necessarily need our chips, because they could use commercial FPGAs," he adds. "We will soon distribute the tools and code for emulating the functionality of our system on commercial components."

The partners are awaiting delivery of 80 final chips. Each one is identical, but can be used with the others to scale up its capabilities. The chips will be tested using applications such as autonomous robots and speech synthesis software. Says Moreno: "We will definitively prove that the chips can evolve and learn. Our next goal is a project that adds analog capabilities and more dynamism through complex algorithms." As before, living beings will be the model for research.

For more information contact Professor Juan-Manuel Moreno, Universitat Politècnica de Catalunya, Spain, 0934 93 401 5691.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: Exciting times ahead?
Technews Publishing News
There are many subjects that excite me in this world, but two of the larger technical subjects are, firstly, renewable energy, and secondly, the idea of artificial intelligence as it continues to evolve ...

Read more...
Microchip expands partnership with TSMC
News
Microchip Technology has announced it has expanded its partnership with TSMC to enable a specialised 40 nm manufacturing capacity at Japan Advanced Semiconductor Manufacturing.

Read more...
Huge SA grid battery project
News
A standalone battery energy storage system (BESS) has won preferred bidder status under South Africa’s Energy Storage Capacity Independent Power Producer Procurement Programme (ESIPPPP).

Read more...
Mouser sponsors NCP Cup 2024
News
The NXP Cup is an EMEA-based autonomous car competition, presented by NXP Semiconductors, which is designed to provide students with real-world experiences in autonomous vehicle programming and building.

Read more...
TrinaTracker brings its smart solar tracking to SA
News
The Vanguard 1P is designed to provide customers with trackers that combine suitability for flat terrain, together with outstanding system stability and reliability, quick installation, and flexible external compatibility.

Read more...
Nordex adding 830 MW of wind generation
News
Nordex Energy South Africa will be adding 830 MW of wind energy generation capacity to the company’s already-installed 1 GW base.

Read more...
Invertek produces its three millionth drive
iTek Drives News
Invertek Drives Ltd, a global manufacturer of variable frequency drive (VFD) technology, has celebrated producing its three millionth VFD, just three years after its two-million milestone.

Read more...
Analog Devices’ digital storefront is live
News
Analog Devices has designed an improved digital experience with users in mind – a new analog.com website and eShop.

Read more...
Vicor Powering Innovation podcast
News
The episode explores electrification with Lightning Motorcycles, a company that produces the fastest electric motorcycle on the planet.

Read more...
ModusToolbox Workshop 3
News
This workshop will focus on enabling a PSoC development kit, connected over Wi-Fi and leveraging MQTT, to create the framework of an IoT application.

Read more...