News


Tomorrow's chips naturally

4 May 2005 News

Visionaries more than half a century ago imagined machines capable of growth, self-repair and self-replication. By digitally mimicking biological tissue's properties, researchers recently demonstrated a platform for autonomous computer systems.

"There are three ways to model hardware on self-organising biology," says Juan-Manuel Moreno, coordinator of the POEtic project. "They are development, learning and evolution - respectively known to biologists as ontogenesis, epigenesis and phylogenesis. All three models are based on a one-dimensional description of the organism, the genome."

In the early 1990s, computer scientists tested systems that mimic the development of an individual as directed by their genetic code. Then they started to use artificial intelligence to copy the processes of learning, as influenced by an individual's genetic code and their environment. "But until our project, nobody had succeeded in bringing together all three models in a single piece of hardware," adds Moreno.

In May 2004, the partners received the first POEtic chips. Each one included a specially developed microprocessor, designed to run evolutionary algorithms, and a basic programmable unit. "The electronic substrate in this unit is like a living molecule, made up of various elements or cells," says Moreno.

Each cell can communicate with the environment (through sensors and actuators) and with neighbouring cells (through bi-directional channels), thus executing a function.

Though each cell has the same basic structure, it can acquire different functionalities - much like cells in a living organism. This flexibility comes from the organisation of the electronic cells into three layers. The genotype plane is like a digital genome, containing a full description of the organism. The configuration plane transforms the genome into a configuration string, which directly controls the processing unit of the phenotype plane.

Early simulations showed these substrate features would allow the chips to simulate anything. "By building and testing the chips, we proved the concept of adaptive and dynamic hardware," says Moreno. "They are adaptive because we can modify the system's basic parameters and structure. And they are dynamic because these changes can be done autonomously and in realtime." Other chips can be modified in this way, but this can take hours or days using field-programmable gate arrays (FPGAs).

Aeronautic and automotive companies have expressed interest in the project's findings. Both sectors would welcome the chance to organise and reconfigure systems in realtime, as well as to have self-repair features and fail-safe parallel processing. "However, they would not necessarily need our chips, because they could use commercial FPGAs," he adds. "We will soon distribute the tools and code for emulating the functionality of our system on commercial components."

The partners are awaiting delivery of 80 final chips. Each one is identical, but can be used with the others to scale up its capabilities. The chips will be tested using applications such as autonomous robots and speech synthesis software. Says Moreno: "We will definitively prove that the chips can evolve and learn. Our next goal is a project that adds analog capabilities and more dynamism through complex algorithms." As before, living beings will be the model for research.

For more information contact Professor Juan-Manuel Moreno, Universitat Politècnica de Catalunya, Spain, 0934 93 401 5691.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the Editor's desk: Growth through inclusivity
Technews Publishing News
As the engineering fields in South Africa continue to make progress toward gender equality, we are finally starting to see the presence and contribution of women in engineering and industrial roles.

Read more...
KITE 2025 proves its value
News
The KwaZulu-Natal Industrial Technology Exhibition (KITE) 2025 confirmed its place as KwaZulu-Natal’s must-attend industrial event, drawing thousands of industry professionals.

Read more...
Otto Wireless Solutions announces promotion of Miyelani Kubayi to technical director
Otto Wireless Solutions News
Otto Wireless Solutions is proud to announce the promotion of Miyelani Kubayi to the position of technical director, effective 1 August 2025.

Read more...
DMASS experiences continued slowdown
News
The European electronic components distribution market continued its downward trajectory in the second quarter of 2025, according to new figures released by DMASS.

Read more...
World-first zero second grid-to-backup power switch
News
JSE-listed cable manufacturer, South Ocean Electric Wire, has completed a solar installation it says marks a global first: a seamless switch from grid to backup power in zero seconds.

Read more...

News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
Cobots for opto production line
News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved