Telecoms, Datacoms, Wireless, IoT


Mobile phone data connectivity protocols: the battle heats up

22 August 2007 Telecoms, Datacoms, Wireless, IoT

Data connectivity in mobile phones can be achieved in two ways. The first option is with the help of the mobile service providers by employing data transfer technologies such as general packet radio service (GPRS), enhanced data rates for GSM evolution, high-speed downlink packet access, and so on. The other is via technologies that do not require the involvement of mobile service providers, such as Bluetooth, universal serial bus (USB), infrared, and Wi-Fi, thereby enabling connectivity between mobile phones or personal computers (PCs).

The importance of the second option has increased significantly in the recent past, mainly due to the rise in memory storage capacity of the mobile phone, up to 8 GB, thereby facilitating the storage of a larger number of files.

In order to move data on and off a mobile phone, the present generation of mobile phones largely makes use of Bluetooth for short range wireless connectivity and USB for wired connectivity. But what will the future look like? This is an interesting question as high data rate wireless communication technologies are emerging. The protocols and technologies for connectivity in the future mobile phones could be the ones based on ultra-wide band (UWB) and Wi-Fi.

The current version of USB and Bluetooth are anticipated to be present in a rather different way in the future. USB, the most popular wired connectivity solution at the moment, is expected to take the wireless path to become 'certified wireless USB', and the future generation of Bluetooth will be seen in the form of Bluetooth 3.0.

What these solutions have in common is UWB, since certified wireless USB and Bluetooth 3.0 are estimated to work on UWB and are based on the WiMedia Alliance's UWB common radio platform. These technologies based on UWB are aimed at high data rate applications in excess of 480 Mbps.

Besides these technologies, Nokia has announced its motive of developing Wibree, a low power-based connectivity solution between mobile devices or PCs, and small, button cell battery power devices. Also, the Bluetooth Special Interest Group has shown interest in implementing Wibree as an ultra-low power Bluetooth technology.

In addition to the existing connectivity protocols - USB, Bluetooth, Wi-Fi and irDA - there are another three possible protocols: wireless USB, Bluetooth 3.0 and Wibree. Therefore, there could be seven possible ways to establish connectivity between mobile phones and other devices.

It is estimated that a wired USB solution would still be present in spite of the emergence of the various wireless-based connectivity solutions. The future of infrared connectivity does not look good and might disappear mainly due to its weak characteristics of low data rate and line of sight. The battle for short range wireless connectivity solutions could heat up with the presence of Wi-Fi, Wireless USB, and Bluetooth.

Since wireless USB and Bluetooth 3.0 are expected to run over UWB, the time to market will be crucial for both. Wireless USB appears to be leading the race at the moment in terms of chipset production, as chipsets compliant with Wireless USB 1.0 are expected to hit the market in large volumes by the end of this year. There has been a steady increase in the number of mobile phones that have Wi-Fi on them, despite its tag of having high power consumption.

If solutions based on UWB make it into the mobile phone, it could pose a severe threat to the existence of Wi-Fi in the same. Since UWB is a low-power, high data rate solution, it is perhaps the best solution for the mobile environment that is battery powered.

It is therefore expected that the wired USB will coexist with more than one wireless connectivity technology in the future, with one of them a UWB-based solution.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
RF power amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The ZHL-20M2G7025X+ from Mini-Circuits is a 32 W power amplifier that operates from 20 to 2700 MHz and delivers a saturated output power of +45 dBm.

Read more...
Introducing the Quectel EG800Z series
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG800Z series is Quectel’s latest ultra-compact LTE Cat 1 bis module, designed to deliver reliable connectivity, low power consumption, and robust performance across a wide range of IoT applications.

Read more...
NeoMesh on LoRa
CST Electronics Telecoms, Datacoms, Wireless, IoT
Thomas Steen Halkier, CEO of NeoCortec, recently gave a keynote speech where he spoke about “NeoMesh on LoRa: Bringing true mesh networking to the LoRa PHY”.

Read more...
Modules upgraded with Direct-to-Cell tech
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that several of its LTE modules are now available with Direct-to-Cell (D2C) functionality, enabling devices to seamlessly connect to satellite networks.

Read more...
USB/Ethernet smart RF power sensor
RF Design Telecoms, Datacoms, Wireless, IoT
The PWR-18PWHS-RC from Mini-Circuits is an RF power sensor that operates from 50 MHz to 18 GHz and is designed to capture pulsed and trace modulated signals with very high data resolution.

Read more...
Tiny Bluetooth LE + 802.15 + NFC module
RF Design Telecoms, Datacoms, Wireless, IoT
Unleashing enhanced processing power, expanded memory, and innovative peripherals, the BL54L15µ from Ezurio is the ultimate choice for small and low power connectivity.

Read more...
AI modules for edge intelligence
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom has introduced two new entry-level AI computing modules, the SIM8668 and SIM8666, designed to bring intelligent capabilities to lightweight, energy-efficient edge devices.

Read more...
High performance ISM antennas
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the launch of two new high performance ISM antennas, designed to meet the need for wireless communication in devices that operate in the industrial and commercial applications.

Read more...
Quad-band high-precision positioning module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has recently announced the launch of the LG680P, a multi-constellation, quad-band GNSS module designed to deliver high-precision positioning across a wide range of applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved