News


Cooling chips with microjets

1 October 2008 News

An increasingly important requirement of microelectronics is the development of thermal management systems for cooling chips.

Chips generate excessive amounts of heat that peak in certain parts and potentially threaten their functioning by destroying their internal circuitry. Current cooling technologies are capable of cooling at the rate of 200 W/cm², but technologies have stagnated at this point for several years.

As more high-performance chips are being developed, the heat generated from them will exceed that of conventional microprocessors, calling for better cooling techniques than heatsinks and fans. In light of this, researchers at Purdue University have developed a hybrid cooling technique based on microjets and microfluidic channels that is capable of cooling high-performance chips.

The microjets are used to inject liquid into miniaturised channels and are said to absorb five times more heat than other techniques being developed for chip-cooling in computers and electronics. The technique is capable of cooling at the rate of 1000 W/cm², which allows for greater advances in performance. The method involves the circulation of cooling liquid or hydrofluorocarbon within the chip. As the coolant is an insulator, it does not conduct electricity or cause short circuits.

The cooling system consists of narrow grooves less than a millimetre wide that form channels on top of a chip and are covered using a metal plate with tiny holes. The microjets inject the coolant through these holes and the liquid then flows along grooves to cool the chip. On getting heated by the chip within the channels, the coolant bubbles and momentarily becomes a vapour in order to aid rapid cooling.

The hydrofluorocarbon coolant is used in airconditioning and refrigeration systems owing to their low global warming effects. The difference is that hydrofluorocarbons used in airconditioning are in their vapour form at room temperature, whereas those used in Purdue’s experimental chip-cooling system are in liquid form.

Prior research applied on the concept of coolant flow through microchannels suffered from the drawback that the coolant flowed from one part of the chip to the other, collecting heat and was already heated by the time it reached the end of the channel. This put a limit on the cooling efficiency. Purdue’s microjets technique overcomes this challenge by enabling uniform cooling as the liquid is supplied simultaneously through the jets everywhere along the length of each channel.

This method also prevents the overheating of any specific part of the chip. The coolant on circulation collects at both ends of the channel and is then re-circulated through the system.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Electronic News Digest
News
A brief synopsis of current global news relating to the electronic engineering fields with regards to company finances, general company news, and engineering technologies.

Read more...
4000 A containerised DB for power project
News
Power Process Systems has successfully completed the design, fabrication, and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project.

Read more...
Datacentrix Industrial Indaba 2025
News
Datacentrix recently hosted its inaugural Industrial Indaba 2025, where industry leaders explored how digitalisation, resilience, security and compliance are shaping the future of sustainable industrial operations in Africa.

Read more...
RS brings solar light to 150 000 people
RS South Africa News
The company’s three-year partnership with SolarAid aims to raise £1 million through corporate donations, matched funding, product contributions, and fundraising to accelerate access to safe, sustainable energy.

Read more...
Microchip and AVIVA Links collaboration
Altron Arrow News
Microchip and AVIVA Links have achieved groundbreaking ASA-ML interoperability, accelerating the shift to open standards for automotive connectivity.

Read more...
World’s leading supplier of grid automation products
News
Hitachi Energy was recognised as the global market share leader in grid automation for electric power transmission and distribution utilities by ARC Advisory Group.

Read more...
Vivashan Muthan appointed as head of export sales and operations at RS South Africa
RS South Africa News
With a career spanning engineering, business development, and sales leadership across sub-Saharan Africa, Vivashan Muthan brings a wealth of expertise to his new role as head of export sales and operations.

Read more...
Google equips university students across Africa with free access to advanced AI tools
News
A 12-month Google AI Pro plan has been launched for students in Ghana, Kenya, Nigeria, Rwanda, South Africa, and Zimbabwe to build foundational AI skills.

Read more...
Africa’s space economy projected to be worth $22,6 billion in 2026
News
South Africa is gearing up to be at the forefront of the growth in the space industry, creating thousands of jobs, driving innovation, and boosting the national economy.

Read more...
Distribution partnership with MacDermid Alpha
Testerion News
MacDermid Alpha Electronics Solutions India Private Limited has announced that as of 01 September 2025 Testerion will be the sole importer and distributor of their products to the South African market.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved