mobile | classic
Dataweek Electronics & Communications Technology Magazine

Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


Breakthrough in 3D IC design
12 November 2008, Analogue, Mixed Signal, LSI

One of the anticipated limitations in the field of electronics that is likely to be faced at some point in the future is that it might become impossible to juxtapose more chips on a circuit board. This in turn might limit the capabilities of future processors.

Significant strides are being made by investigators from around the globe to unveil solutions to address the associated challenges of this problem. Amongst the suggested solutions is the expansion of circuitry in the vertical direction rather that the conventional horizontal orientation – that is, to shift from two-dimensional (2D) circuit configuration to three-dimensional (3D) chip configuration.

An archetypal circuit, which has marked the realisation of this technology transformation, is being developed at the University of Rochester (UofR) in New York. Engineers from the university’s department of electrical and computer engineering have developed what they claim is the first-ever 3D synchronisation circuitry, which operates at 1,4 gigahertz frequency.

The scientists at UofR refer to this circuitry as the cube. They are also expecting this novel technology to extensively enhance the capabilities of processors beyond what was possible to achieve with a conventional 2D microchip.

The approach adopted for the fabrication of the 3D chip is a unique procedure, which involves drilling millions of holes through layers of insulating material, which are employed for providing electrical isolation between the multiple layers of circuitry. Through this technique, myriads of vertical electrical connectivity are enabled between the transistors across different layers.

The factor that clearly distinguishes UofR’s work from prior attempts to create 3D processors is that the new chip does not involve stacking a number of regular processors on top of one another. The circuit was optimally designed to enable the execution of all key processing functions through multiple layers of the processor in a manner that is similar to that of a regular chip design, which functions on a 2D platform.

Possibly the most innovative aspect of the suggested design is that it has pioneered facilitating the synchronicity, power distribution and long-distance signalling for a 3D processor design. According to the researchers, the design favours the miniaturisation trend in electronics, as 3D chips essentially incorporate the entire circuit board, which normally spreads across a comparatively larger surface area. Due to the shorter distances that are to be covered by the electrical signals, the operational speeds are expected to increase by at least 10 times.

The vertical design has not yet been optimised and there are numerous impediments faced by the design at present. According to the creators of the chip, the task of getting the multiple layers to function in harmony is quite challenging. This is because an entire circuit board is shrunk and incorporated onto a single cube and multiple layers with different functional speed and frequency with varying power requirements will have to be interfaced. Designing a single control system to work in any chip is another assignment that poses a significant challenge.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274,,

  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • Exploring MagAlpha magnetic angle sensor technology
    25 September 2019, NuVision Electronics, Analogue, Mixed Signal, LSI
    The ability to detect position or speed is a fundamental requirement in the control and monitoring of many mechanical systems. Slow speed position measurement in applications such as motorised actuators ...
  • Accelerometer with high-accuracy temperature sensor
    28 August 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    The STMicroelectronics LIS2DTW12 combines a MEMS 3-axis accelerometer and a temperature sensor on a single die for use in space-constrained and battery-sensitive detectors such as shipping trackers, wearables ...
  • Miniature quartz crystal
    28 August 2019, Würth Elektronik eiSos, Analogue, Mixed Signal, LSI
    IQD Frequency Products has launched one of the world’s smallest quartz crystals, the IQXC-240, which measures just 1,2 x 1,0 mm with a height of only 0,33 mm. It is available in frequencies between 36 ...
  • Pressure and temperature sensor
    28 August 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    The MS5837-02BA pressure sensor module from TE Connectivity is an ultra-small, gel-filled pressure sensor optimised for both altimeter and barometer applications. Designed for consumer devices such as ...
  • Motion sensor with machine learning
    28 August 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    STMicroelectronics has integrated machine learning technology into its advanced inertial sensors to improve activity tracking performance and battery life in mobiles and wearables. The LSM6DSOX iNEMO ...
  • Low-power real-time clock
    31 July 2019, CST Electronics, Analogue, Mixed Signal, LSI
    The MAX31341B nanoPower real-time clock (RTC) from Maxim Integrated Products enables designers of space-constrained systems such as wearables, medical monitors, point-of-sale (POS) equipment and portable ...
  • Healthcare sensors for wearable devices
    31 July 2019, CST Electronics, Analogue, Mixed Signal, LSI
    Designers creating next-generation wearable health and fitness applications can reduce temperature measurement power with the MAX30208, as well as shrink optical solution size with the MAXM86161 from ...
  • MEMS timing solutions for aerospace/defence
    31 July 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    SiTime recently unveiled its Endura MEMS timing solutions for aerospace and defence applications such as field and satellite communications, precision GNSS, avionics, and space. The Endura products are ...
  • PCIe clock buffers
    31 July 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    Microchip Technology announced four new 20-output differential clock buffers that exceed PCIe (PCI Express) Gen 5 jitter standards for next-generation data centre applications. The ZL40292 (85Ω termination) ...
  • Impedance and potentiostat front end
    26 June 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    A new electrochemical and impedance measurement front end has been developed by Analog Devices to enable the next generation of vital sign monitoring devices and intelligent electrochemical sensors. The ...
  • ‘Industry’s fastest’ 12-bit ADC
    26 June 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    Texas Instruments introduced a new ultra-high-speed analog-to-digital converter (ADC) with what it claims are the industry’s widest bandwidth, fastest sampling rate and lowest power consumption. The ADC12DJ5200RF ...
  • Crystal oscillators for automotive systems
    26 June 2019, Altron Arrow, Analogue, Mixed Signal, LSI
    Mercury Electronics Europe has announced a new range of wide operating temperature crystal oscillators that are suitable for use in automotive applications. The new surface mount HY series offers 15 ...

Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Terms & conditions of use, including privacy policy
PAIA Manual


    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.