News


Novel technique for making nanoscale transistors

29 April 2009 News

The miniaturisation of electrical components used in computing devices has been a 40-year trend. The amount of miniaturisation and performance, as well as the diversity of electronic devices, has advanced considerably in these decades. Following Moore’s law, the number of transistors that can fit into the same-sized integrated circuit has been doubling every 1,5 years as a result of nearly constant technological progress. Conventional computers that once filled buildings are now easily fitted into the palm of one’s hand.

As transistors are an important component in any electronic device, a lot of research work has been carried on to reduce the size of these transistors. Miniaturisation of conventional silicon chips is close to reaching fundamental limits, as the smallest silicon transistors that are currently available are of the 45 nanometre range. Reducing the size of these components further will result in smaller, powerful and energy-efficient electronic devices.

A team of researchers from the University of Pittsburgh has developed a new class of electronic devices that could be used to make both nanoscale transistors and high-density memory devices. The team has developed a nanoscale one-stop shop, a platform to create electronic devices very close to the single atomic scale. The idea of developing the already existing devices at the nanoscale level from the same material that has been conventionally used, was inspired by the microscopic Etch A Sketch, a drawing toy.

The system developed by the team consists of two layers, one made from a crystal of strontium titanate with another layer of lanthanum aluminate (three atomic layers thick). Both layers are by themselves insulators. The researchers have been able to modify the properties of the interface between these two materials so that it can be converted into a conductor, and it can be switched back and forth based on the requirement.

An atomic force microscope is used to draw lines on top of the layers, like the Etch A Sketch. With this technique, circuitry that is just 5 atoms wide can be drawn. The researchers hope that eventually only one electron will be needed to store one bit of information or operate the transistor.

The best feature of this technique is that the lines drawn on the layers in the chip can be erased or modified without the necessity of any complex procedures. The team developed a transistor that is 2 nm in size and named it SketchFET, which is significantly smaller than the currently existing 45 nm silicon chip. This technique could be used to create a wide variety of electronics and information technology. In addition, nanowires of desired pattern and length can be made using this proposed technology.

The characteristic features of SketchFET transistors are similar to those of silicon transistors and their applications are very promising. The SketchFET transistors can be erased if required and replaced by devices such as high-density memory, wiring or chemical sensors. It is anticipated that the development of this technique will mainly benefit nanoelectronics and the sensor field.

Using this technique, different processing circuits or memory devices can be designed and erased on the chip depending on the requirement. Apart from the electronics industry, other industries that would benefit from this innovation are information technology and biotechnology, by developing sensors that are sensitive to biological agents.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Components distribution slowdown Q1 2025
News
European components distribution (DMASS) experienced a continued slowdown in the first quarter 2025.

Read more...
Semiconductor sales increase 17% YoY
News
The Semiconductor Industry Association (SIA) recently announced global semiconductor sales were $54,9 billion during the month of February 2025, an increase of 17,1% compared to the February 2024 total.

Read more...
Silicon Labs – Q1 results
News
Silicon Labs, a leading innovator in low-power wireless, recently reported financial results for the first quarter, which ended April 5, 2025.

Read more...
Strengthening industry through strategic partnerships at KITE 2025
Specialised Exhibitions News
The KwaZulu-Natal Industrial Technology Exhibition is not just an exhibition, it is a powerhouse of industry collaboration where visitors and exhibitors gain access to authoritative insights, technical expertise, and high-impact networking opportunities.

Read more...
Solar Youth Project calls on industry to step up
News
With the second cohort completed training and the first cohort returning for their final module, host companies are urgently needed to turn the training into a long-term opportunity.

Read more...
Conlog powers SA’s future with national smart meter rollout
News
Conlog recently secured the RT29-2024 contract from National Treasury, which is seen to be a major milestone towards modernising SA’s utility infrastructure.

Read more...
Zuchongzhi-3 sets new benchmark
News
This latest superconducting quantum computing prototype features 105 qubits and 182 couplers to operate at a speed 10¹5 times faster than the most powerful supercomputer currently available.

Read more...
Automatic device attestation certificate for Panasonic
News
DigiCert recently announced it has partnered with Panasonic Industry Europe to integrate DigiCert Device Trust Manager with Panasonic’s PAN-MaX intelligent manufacturing service for seamless Matter certification of interoperable smart home devices.

Read more...
From the editor's desk: Are we really being ripped off?
Technews Publishing News
To the surprise of many customers, installing solar panels does not always eliminate their utility bill – and in some cases, the power utility may impose additional charges on solar-powered homes.

Read more...
Winner of the Advanced Electronics Challenge
Avnet Silica News
Avnet Silica has named Hydronauten winner of the Advanced Electronics Challenge for breakthrough AI-driven vibration damping technology.

Read more...