News


Harvesting energy from biological movement

24 June 2009 News

The search for alternative energy sources is no longer restricted to just solar, wind and tidal energy. Nanogenerators have made it possible to convert ambient mechanical energy, such as vibrations and fluid flow, into a power source. Even human biological movement, such as muscle stretching, walking, heartbeat and blood flow, can be converted into useful energy via nanogenerators.

While this technology does present challenges associated with inconsistent frequencies and amplitudes of the movements, research is currently underway to overcome these difficulties. An alternating current (AC) generator was recently developed to draw energy from the cyclic stretching-releasing of a piezoelectric fine wire (PFW) and packaged on a flexible substrate. When the substrate undergoes bending, a potential drop is created in the PFW, leading to power generation.

Single wire generators (SWGs) are generally reported to demonstrate an efficient technology for harvesting energy from low-frequency vibrations. Essentially, because they are packageable and practical, they can be implanted in muscles, incorporated into cloth materials, and even used as part of shoe pads.

In this regard, a team from the Georgia Tech University has recently developed an SWG system that harvests energy from small-scale dynamic muscle movements, such as human finger tapping and the body movement of a hamster. A series of connections of four SWGs has been demonstrated to output an alternating voltage of approximately 0,1 to 0,5 V in amplitude.

The researchers constructed the SWG using a flexible polyimide film as the substrate and the two ends of the zinc oxide (ZnO) nanowire being fixed on the top surface of the substrate. The entire SWG system is reported to have been packaged with a flexible polymer so as to enhance robustness and adaptability.

The team began to experiment with the harvesting of energy from human finger movement. When the SWG was attached to the joint position of the index finger, the repeated bending of the finger resulted in a cycled strain in the nanowire. The deformation of the nanowire further produces a piezoelectric potential in the wire resulting in external electron flow and electrical power output.

A similar experiment was also conducted on a live hamster, using its regular and irregular motions such as running and scratching. The researchers report that a short-circuit current from a running hamster can reach about 0,5 nA, with an open-circuit voltage of about 50 to 100 mV.

Apart from having taken biomechanical energy conversion to a new level, the research team has also overcome the technical limitation to multiple integration of SWGs. The integration has helped increase the output voltage up to 0,1 to 0,5 V. Given their success with low-frequency biological vibration, it is foreseen that these SWGs could also be used to tap energy from other environmental disturbances.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the Editor's desk: Growth through inclusivity
Technews Publishing News
As the engineering fields in South Africa continue to make progress toward gender equality, we are finally starting to see the presence and contribution of women in engineering and industrial roles.

Read more...
KITE 2025 proves its value
News
The KwaZulu-Natal Industrial Technology Exhibition (KITE) 2025 confirmed its place as KwaZulu-Natal’s must-attend industrial event, drawing thousands of industry professionals.

Read more...
Otto Wireless Solutions announces promotion of Miyelani Kubayi to technical director
Otto Wireless Solutions News
Otto Wireless Solutions is proud to announce the promotion of Miyelani Kubayi to the position of technical director, effective 1 August 2025.

Read more...
DMASS experiences continued slowdown
News
The European electronic components distribution market continued its downward trajectory in the second quarter of 2025, according to new figures released by DMASS.

Read more...
World-first zero second grid-to-backup power switch
News
JSE-listed cable manufacturer, South Ocean Electric Wire, has completed a solar installation it says marks a global first: a seamless switch from grid to backup power in zero seconds.

Read more...

News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
Cobots for opto production line
News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved