News


Invisibility cloak design simplified

24 June 2009 News

Researchers have created a new type of invisibility cloak that is simpler than previous designs and works for all colours of the visible spectrum, making it possible to cloak larger objects than before and possibly leading to practical applications in 'transformation optics'. Whereas previous cloaking designs have used exotic 'metamaterials', which require complex nanofabrication, the new design is a far simpler device based on a 'tapered optical waveguide', according to Vladimir Shalaev, Purdue University’s Robert and Anne Burnett Professor of Electrical and Computer Engineering. Waveguides represent established technology – including fibre-optics – used in communications and other commercial applications.

Researchers have created a new type of invisibility cloak that is simpler than previous designs and works for all colours of the visible spectrum, making it possible to cloak larger objects than before and possibly leading to practical applications in 'transformation optics'. Whereas previous cloaking designs have used exotic 'metamaterials', which require complex nanofabrication, the new design is a far simpler device based on a 'tapered optical waveguide', according to Vladimir Shalaev, Purdue University’s Robert and Anne Burnett Professor of Electrical and Computer Engineering. Waveguides represent established technology – including fibre-optics – used in communications and other commercial applications.

The research team used their specially tapered waveguide to cloak an area 100 times larger than the wavelengths of light shined by a laser into the device, an unprecedented achievement. Previous experiments with metamaterials have been limited to cloaking regions only a few times larger than the wavelengths of visible light. Because the new method enabled the researchers to dramatically increase the cloaked area, the technology offers hope of cloaking larger objects, Shalaev said.

Findings are detailed in a research paper that appeared in the 29 May issue of the journal Physical Review Letters. The paper was written by Igor I. Smolyaninov, a principal electronic engineer at BAE Systems in Washington, D.C.; Vera N. Smolyaninova, an assistant professor of physics at Towson University in Maryland; Alexander Kildishev, a principal research scientist at Purdue’s Birck Nanotechnology Centre; and Shalaev.

“All previous attempts at optical cloaking have involved very complicated nanofabrication of metamaterials containing many elements, which makes it very difficult to cloak large objects,” Shalaev said. “Here, we showed that if a waveguide is tapered properly it acts like a sophisticated nanostructured material.”

The waveguide is inherently broadband, meaning it could be used to cloak the full range of the visible light spectrum. Unlike metamaterials, which contain many light-absorbing metal components, only a small portion of the new design contains metal.

Theoretical work for the design was led by Purdue, with BAE Systems leading work to fabricate the device, which is formed by two gold-coated surfaces, one a curved lens and the other a flat sheet. The researchers cloaked an object about 50 microns in diameter, or roughly the width of a human hair, in the centre of the waveguide. “Instead of being reflected as normally would happen, the light flows around the object and shows up on the other side, like water flowing around a stone,” Shalaev said.

The research falls within a new field called transformation optics, which may usher in a host of radical advances over and above cloaking: powerful 'hyperlenses' resulting in microscopes 10 times more powerful than today’s and able to see objects as small as DNA; computers and consumer electronics that use light instead of electronic signals to process information; advanced sensors; and more efficient solar collectors.

Unlike natural materials, metamaterials are able to reduce the 'index of refraction' to less than one or less than zero. Refraction occurs as electromagnetic waves, including light, bend when passing from one material into another. It causes the bent-stick-in-water effect, which occurs when a stick placed in a glass of water appears bent when viewed from the outside. Each material has its own refraction index, which describes how much light will bend in that particular material and defines how much the speed of light slows down while passing through a material.

Natural materials typically have refractive indices greater than one. Metamaterials, however, can be designed to make the index of refraction vary from zero to one, which is needed for cloaking. The precisely tapered shape of the new waveguide alters the refractive index in the same way as metamaterials, gradually increasing the index from zero to one along the curved surface of the lens, Shalaev said.

Previous cloaking devices have been able to cloak only a single frequency of light, meaning many nested devices would be needed to render an object invisible. Kildishev reasoned that the same nesting effect might be mimicked with the waveguide design. Subsequent experiments and theoretical modelling proved the concept correct.

Researchers do not know of any fundamental limit to the size of objects that could be cloaked, but additional work will be needed to further develop the technique.

Recent cloaking findings reported by researchers at other institutions have concentrated on a technique that camouflages features against a background. This work, which uses metamaterials, is akin to rendering bumps on a carpet invisible by allowing them to blend in with the carpet, whereas the Purdue-based work concentrates on enabling light to flow around an object.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...
Global semiconductor sales increase
News
The Semiconductor Industry Association (SIA) has announced global semiconductor sales were $57,0 billion during the month of April 2025, an increase of 2,5% compared to the March 2025.

Read more...
Avnet Abacus announced new president
Avnet Abacus News
Avnet Abacus has announced that Mario Merino will succeed Rudy Van Parijs as president of Avnet Abacus, effective 1 July 2025.

Read more...
Avnet Abacus wins multiple prestigious awards
Avnet Abacus News
The awards from Molex recognise outstanding performance, collaboration, and significant growth in the challenging market conditions of 2024.

Read more...
Components distribution slowdown Q1 2025
News
European components distribution (DMASS) experienced a continued slowdown in the first quarter 2025.

Read more...
Semiconductor sales increase 17% YoY
News
The Semiconductor Industry Association (SIA) recently announced global semiconductor sales were $54,9 billion during the month of February 2025, an increase of 17,1% compared to the February 2024 total.

Read more...
Silicon Labs – Q1 results
News
Silicon Labs, a leading innovator in low-power wireless, recently reported financial results for the first quarter, which ended April 5, 2025.

Read more...
Strengthening industry through strategic partnerships at KITE 2025
News
The KwaZulu-Natal Industrial Technology Exhibition is not just an exhibition, it is a powerhouse of industry collaboration where visitors and exhibitors gain access to authoritative insights, technical expertise, and high-impact networking opportunities.

Read more...
Solar Youth Project calls on industry to step up
News
With the second cohort completed training and the first cohort returning for their final module, host companies are urgently needed to turn the training into a long-term opportunity.

Read more...
Conlog powers SA’s future with national smart meter rollout
News
Conlog recently secured the RT29-2024 contract from National Treasury, which is seen to be a major milestone towards modernising SA’s utility infrastructure.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved