News


3D ICs from carbon nanotubes

17 February 2010 News

A team of researchers from Stanford University has developed three-dimensional (3D) carbon nanotube circuits for the first time.

These novel circuits are expected to enhance the speed of computing and thereby reduce their power consumption. Developing carbon nanotube circuit-based computers could realistically take another 10 years, but the Stanford team has developed a method to manufacture stacked circuits using carbon nanotubes. These circuits also have the capability to cram more power in a defined area, thereby dissipating waste heat.

A recent study performed by the team of researchers at IBM’s Watson Research Centre showed that, for a given total power consumption, the circuit developed from carbon nanotubes is five times faster than that of conventional silicon chips. Traditionally used silicon chips can be miniaturised, but at the same time, the desired performance from the silicon chips is not achieved. There is therefore a need for an alternate material that can be used to miniaturise the circuits and at the same time maintain device performance.

In the past, researchers have achieved success in developing carbon nanotube-based transistors, but scaling them onto the circuits has been a challenge. This challenge could possibly be overcome by the methodology developed by the team at Stanford. Using this methodology, it might be possible to develop complex nanotube circuits, despite the limitations posed by the fabrication material.

Initially the team at Stanford grew arrays of nanotubes on quartz substrate to manufacture circuits. Some nanotubes grew in straight lines while a few of them in a crooked manner. A team of chemists was appointed to work on methods that can be used to grow nanotubes in a straight line. The grown nanotubes contained both semiconducting and metallic nanotubes.

Further, the team developed a method to manufacture circuits using metallic carbon nanotubes using a ‘dumb’ layout. A stamp was used to transfer the flat lying aligned carbon nanotube arrays on to a silicon wafer. Further metal electrodes were placed above the nanotubes. An insulating layer that acts as a back gate was placed in between the silicon and the nanotubes. This allowed the researchers to switch off the semiconducting nanotubes before using the metal electrodes to burn out the metallic nanotubes with a blast of electricity. A top gate is added in such a way that it does not connect with any of the misaligned nanotubes. The metal electrodes are removed by etching, as they are not required for the final circuit.

Further, to develop a 3D nanotube circuit, the team repeated the stamping and electrode growth process to stack the required number of layers before the etching process. The process demonstrated by the team is a novel way of stacking as many layers as possible, as it is performed at a low temperature that does not melt the metal electrical contact under the layers. Until now the team has fabricated nanotube arrays of 10 nanotubes per micrometre. To avail a better performance, the team is working on methods to fabricate 100 nanotubes per micrometre. The team is also working on methods for developing complex integrated circuits.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)18 464 2402, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...
The current sentiment of the global electronics manufacturing supply chain
News
In its latest report, the Global Electronics Association provides an analysis of the current sentiment and conditions in the global electronics manufacturing supply chain as of June 2025.

Read more...
Global semiconductor sales increase in May
News
The Semiconductor Industry Association recently announced global semiconductor sales were $59,0 billion during the month of May 2025, an increase of 19,8%.

Read more...
New president for Avnet EMEA
News
Avnet has announced that Avnet Silica’s president, Gilles Beltran, will step into the role of president of Avnet EMEA.

Read more...
DARPA sets new record for wireless power beaming
News
In tests performed in New Mexico, the Persistent Optical Wireless Energy Relay program team recorded over 800 W of power delivered for about 30 seconds with a laser beam crossing 8,6 kilometres.

Read more...
Nordic Semiconductor acquires Memfault
RF Design News
With this acquisition, Nordic has launched its first complete chip-to-cloud platform for lifecycle management of connected products.

Read more...
Trina storage demonstrates high efficiency and long-term reliability
News
Independent testing confirms 95,2% DC efficiency and 98% capacity retention after one year of operation.

Read more...
From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved