News


TFETs could decimate energy wasted by electronic devices

24 November 2010 News

Ecole Polytechnique Federale de Lausanne and IBM announced a major research initiative, with several leading academic and corporate research organisations across Europe, to address the alarming growth of energy consumption by electronic devices, ranging from mobile phones to laptops and televisions to supercomputers.

The research project, called Steeper, aims to increase the energy efficiency of these devices, when active, by 10 times and virtually eliminate power consumption when they are in passive or standby mode.

Coordinated by Ecole Polytechnique Federale de Lausanne (EPFL), Project Steeper includes leading corporate research organisations: IBM Research, Infineon and Globalfoundries, large research institutes CEA-LETI and Forschungszentrum Julich, academic partners, University of Bologna, University of Dortmund, University of Udine and the University of Pisa and the managerial support of SCIPROM.

Scientists collaborating on the project will apply their expertise and research to tunnel field effect transistors (TFETs) and semiconducting nanowires to improve the efficient use of energy in electronics. To explain the challenge, consider a leaky water faucet – even after closing the valve as far as possible water continues to drip – this is similar to today’s transistor, in that energy is constantly ‘leaking’ or being lost or wasted in the off-state. In Steeper, scientists not only hope to contain the leak by using a new method to close the gate of the transistor more tightly, but also open and close the gate for maximum current flow with less voltage for maximum efficiency.

According to the International Energy Agency (IEA), electronic devices currently account for 15% of household electricity consumption, and energy consumed by information and communications technologies as well as consumer electronics will double by 2022 and triple by 2030 to 1700 Terawatt hours – this is equal to the entire total residential electricity consumption of the United States and Japan in 2009.

Particularly wasteful is the enormous amount of standby consumption. In the European Union it is estimated that standby power already accounts for about 10% of the electricity use in homes and offices of the member States. By 2020 it is expected that electricity consumption in standby/off mode will rise to 49 Terrawatt hours per year – nearly equivalent to the annual electricity consumption for Austria, Czech Republic and Portugal combined.

“Our vision is to share this research to enable manufacturers to build the Holy Grail in electronics, a computer that utilises negligible energy when it is in sleep mode, which we call the zero-watt PC,” said Prof. Adrian M. Ionescu, Nanolab, Ecole Polytechnique Federale de Lausanne, who is coordinating the project. With the support of the European Commission’s 7th Framework Programme (FP7), project Steeper scientists will explore novel nanoscale building blocks for computer chips that aim to reduce the operating voltage to less than 0,5 Volts, thus reducing their power consumption by one order of magnitude.

“Power dissipation has become one of the major challenges for today’s electronics, particularly as the number of devices used by businesses and consumers multiplies globally,” said Dr. Heike Riel, who leads the nanoscale electronics group at IBM Research – Zurich. “By applying our collective research in TFETs with semiconducting nanowires we aim to significantly reduce the power consumption of the basic building blocks of integrated circuits affecting the smallest consumer electronics to massive supercomputers.”

The supporting science

The development of novel devices, such as the steep slope transistors, from which the project gets its name, can provide a much more abrupt transition between the off and on states when compared with the current 60 mV/decade limit of metal–oxide–semiconductor field-effect transistors (MOSFETs) at room temperature. This simultaneously allows for reducing the sub-threshold leakage and lowering the voltage operation. The development of energy-efficient steep sub-threshold slope transistors that can operate at sub-0,5 V operation domain will be a critical factor in the success of the project.

To achieve this, scientists will study the development of so-called TFETs based on silicon (Si), silicon-germanium (SiGe) and III-V semiconducting nanowires. Nanowires are cylindrical structures measuring only a few nanometres in diameter, which allow optimum electrostatic control of the transistor channel. In a TFET, quantum mechanical band-to-band tunnelling is exploited to switch on the device and thus achieve a steeper turn-on characteristic compared to conventional MOSFETs.

Project Steeper will evaluate the physical and practical limits of boosting the performance of TFETs with III-V nanowires, and the resulting advantages for future energy efficient digital circuits. The project started in June 2010 and will continue for 36 months.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...
The current sentiment of the global electronics manufacturing supply chain
News
In its latest report, the Global Electronics Association provides an analysis of the current sentiment and conditions in the global electronics manufacturing supply chain as of June 2025.

Read more...
Global semiconductor sales increase in May
News
The Semiconductor Industry Association recently announced global semiconductor sales were $59,0 billion during the month of May 2025, an increase of 19,8%.

Read more...
New president for Avnet EMEA
News
Avnet has announced that Avnet Silica’s president, Gilles Beltran, will step into the role of president of Avnet EMEA.

Read more...
DARPA sets new record for wireless power beaming
News
In tests performed in New Mexico, the Persistent Optical Wireless Energy Relay program team recorded over 800 W of power delivered for about 30 seconds with a laser beam crossing 8,6 kilometres.

Read more...
Nordic Semiconductor acquires Memfault
RF Design News
With this acquisition, Nordic has launched its first complete chip-to-cloud platform for lifecycle management of connected products.

Read more...
Trina storage demonstrates high efficiency and long-term reliability
News
Independent testing confirms 95,2% DC efficiency and 98% capacity retention after one year of operation.

Read more...
From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved