Telecoms, Datacoms, Wireless, IoT


Adding smart wireless connectivity to an LED lightbulb

31 January 2018 Telecoms, Datacoms, Wireless, IoT

From the days of incandescent bulbs to fluorescents to LEDs, the latter might be one of the most significant advancements the common light bulb has undergone in 140 years of existence. More specifically, smart LEDs are opening up uses for light bulbs that Edison never dreamed of.

But connected lighting has been around for a long time, so why hasn’t it taken off the way other consumer-oriented technology has during the Internet age?

One barrier to entry has been the level of effort required to install connected lighting. It simply wasn’t a do-it-yourself proposition. You had to replace a switch, which means cutting electricity to that switch, removing it, then requiring a completely new switch. This level of home improvement is beyond most homeowners.

Another thing keeping this market gravity-bound has been cost. Like anything, as the price to consumers comes down, adoption rates increase. New switches, wiring, and the cost of labour for installing hardwired circuits wasn’t cheap, and even with the onset of LEDs, cost remains an obstacle. But that’s changing now.

In 2014 standard LED bulbs were $25 apiece, compared to about $2 today. A typical US home has 40 sockets, so imagine dropping $1000 on bulbs for your house. Multiprotocol support, and the flexibility and ease of use this brings, is becoming a differentiator to provide better user experiences and enhanced uses cases. This can be about simply doing Bluetooth commissioning for ZigBee, or it can be about running both ZigBee or Thread and Bluetooth at the same time.

Besides costs, LED bulbs are truly do-it-yourself solutions: simply screw it into an existing socket and you have instant connectivity through your smartphone. LEDs also have the advantage of connectivity becoming so ubiquitous – virtually anyone with a smartphone is familiar with using connectivity as a utility. So LEDs alone deliver on two significant barriers: simple installation and ease of use.

Another barrier, the disparate protocol standards out there, is also being solved. Most of today’s connected light bulbs use either ZigBee or Bluetooth with low energy functionality. Connected switches may use proprietary protocols as well as ZigBee. Multiprotocol has become important because while each standard has its advantages and disadvantages, manufacturers aren’t interested in betting on one protocol over another at the risk of being left behind.

This is why solutions that give developers the flexibility to decide which protocol is the best fit for their application are going to open the market up in ways that until now have been unavailable. Another factor in choosing a single wireless protocol is the regional preferences. For example, ZigBee has a strong presence in the United States but it is not prevalent in Asia, so vendors might be forced to build one version of a product that uses ZigBee in North America and another version that uses Bluetooth with low energy functionality in Asia. This is where vendors like Silicon Labs are helping.

For example, if a customer buys a light that uses ZigBee exclusively, they would need to be sure they were connecting to an existing ZigBee network or gateway. But with multiprotocol support, the end user doesn’t necessarily have to know what kind of network they’re connecting to.

But if that vendor supports ZigBee as well as Bluetooth, that changes the landscape. The device will default to Bluetooth and be controlled via a smartphone app. That app could then search for other networks and join the ZigBee network when it identifies it. Then it’s configured, or bootloaded, and appears as a ZigBee device. The end user doesn’t need to know what’s happening or bother with anything other than interfacing with the app.

Similarly, adding a gateway extends the network beyond the local network. By connecting your lighting network to a router, you can then control and monitor your devices from outside the home. And all of this happens without the user even being aware of all the connectivity hocus-pocus happening behind the scenes. It just works. The flexibility and ease of use of multiprotocol compatibility is now a differentiator for better user experiences and enhanced use cases.

Adding smarts to a dumb LED light bulb

LED light bulbs have now gone through many generations and have better colour balance, improved reliability and lower cost. There are many LED light bulb manufacturers and they are looking at how they can create a more innovative, smart connected light bulb.

Adding smart wireless connectivity to an LED light bulb presents some design challenges. RF modules for ZigBee and Bluetooth Smart are readily available. From a high level, it seems like it might be easy to just add an RF module to an existing design.

LED light bulbs have an electronic ballast which typically includes a power management IC (PMIC) and some high-voltage discrete components. The electronic ballast typically drives the LEDs with a constant current to achieve a constant brightness that does not vary with input voltage or temperature. The electronics also provide good power factor and work with conventional wall-mounted dimmers.

The PMICs typically include an auxiliary power supply to power the PMIC itself. The PMIC auxiliary supply can also power an MCU, wireless SoC or RF module. The auxiliary supply is typically a poorly regulated supply of 10 to 15 V. Therefore, a linear regulator is required to lower this voltage and provide a well regulated 3 V or 1,8 V supply.

The second challenge is how to switch the LED off or dim the LED. One method is to add a MOSFET between the LED cathode and ground for the MCU to switch off or PWM the LED. This presents some issues if the PMIC was originally designed for a constant load. Disabling the PMIC would also disable the auxiliary supply and is not an option.

The first few generations of smart connected LED bulbs will leverage the basic LED bulb designs with modifications. The next generation of smart LED bulbs will incorporate ballast electronics with PMIC that were designed from the ground up for smart bulbs. These designs will include an always-on, well regulated low-voltage supply and the ability to control LED intensity without requiring extra MOSFETs.

Energy efficiency standards such as the EPAs Energy Star program and California Energy Commission’s (CEC) Title 20 Appliance Efficiency programme have strict requirements for standby or vampire current. Energy Star’s ‘Product Specification for Lamps Version 2.0’ requires a standby power of less than 500 MW. The CEC’s Title 20 is even more stringent and requires less than 200 MW in standby mode. While the wireless transceiver power consumption is well below the limit, it is still a challenge to convert the AC line voltage down to the RF transceiver voltage. The auxiliary supply needs to provide about 50 MW to the RF module with an efficiency of better than 50% and a quiescent current of less than 100 MW.

RF module and antenna placement presents some physical design challenges. Basic LED bulbs often have a metal shield around the ballast board to minimise electromagnetic interference from the switching converter. Smart LED bulb designs need to shield the ballast and also provide a good antenna for the RF. A simple PCB antenna on the RF module might work if the module is positioned vertically near the top of the bulb. However, this might interfere with the light transmission and will put the smart semiconductors close to the LED heat source. Designers need to carefully consider how RF performance will impact the usability of their bulbs. It is important to consumers to have a reliable connection.

Last but not least, the temperature environment of the RF module is also a consideration. Ideally the RF module should be placed far from the heat generating LEDs and ballast electronics. However, this is not always practical. The reliability of the LEDs and also the reliability of the wireless SoC can be extended by monitoring the temperature of both the LEDs and the wireless SoC and dimming the LED to limit the heat generation. A thermistor placed near the LEDs can monitor the LED temperature, while the wireless SoC might have an on-chip temperature sensor.

Over-the-air updates

Finally, future-proofing existing devices is one of the chief advantages of over-the-air capabilities. Transferring a new image to a wireless device without requiring external memory means vendors will be able to teach existing devices new tricks.

As mentioned earlier, it is not uncommon for a home to have 40 light bulbs. When the latest Bluetooth standard comes out it would be quite a hassle to manually convert each bulb, but now that is not necessary. By using a common bootloader for all wireless standards, the designer is no longer limited to just updating to the latest version of ZigBee or Bluetooth, etc., but will be able to move from ZigBee to Bluetooth and back again as needed.

For more information contact NuVision Electronics, +27 (0)11 608 0144, [email protected], www.nuvisionelec.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved