Telecoms, Datacoms, Wireless, IoT


Wireless data networks for wind farms

28 January 2004 Telecoms, Datacoms, Wireless, IoT

Stark against the horizon like giant palms reaching for the sky, their beauty and contribution to the environment are a matter of some discussion. But love them or hate them, wind-driven generators are here to stay and are almost certainly going to become even more pervasive. In fact a great deal of investment in wind farms for the production of electrical power is happening in several European countries as well as in the USA. And every wind farm represents a classic market opportunity for an integrated data network, turnkey project.

By definition, these farms are located in scarcely-populated windy areas such as hills, narrow valleys or cliffs open to the sea; all places where there is little, if any, coverage from the public communication networks.

On the other hand, the nature of the energy produced requires that it cannot be stored but must be used immediately at the very same moment it is generated. Consequently, wind farms are almost always connected to the national grid; normally via a substation. Here the outputs of all the turbines are combined and the voltage is transformed up, the power is metered for accounting purposes and transferred to the grid. Often there are several vendors (the producers of wind power), each with its own substation next to that of the grid. These substations are usually located in remote areas and - for environmentally-aesthetic reasons - are in hidden areas.

As with any advanced technology, each and every turbine needs to be carefully controlled and monitored. Further, there are maintenance teams who have to communicate with each other whilst in the field: typically between the ground and the top of the towers and from each tower to the control room, etc. In some instances it is also necessary to transmit video signals.

In situations where the area of operation is relatively small and the number of towers is limited, a dedicated network with high speed narrow band radio modems such as the Satelline-3AS models from Satel are more than adequate. Where the installation is spread over areas covering many hundreds of kilometres then the delay time introduced by the repetition of the UHF signals is no longer acceptable and more sophisticated networks are required, eg, a long distance microwave network transmitting in realtime with an adequate number of broadcasting points from which utilities up to 20 to 30 km are served.

For more information contact Satel SA, 011 887 2898.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Industrial Ethernet time sensitive networking switch
RS South Africa Telecoms, Datacoms, Wireless, IoT
The ADIN3310 and ADIN6310 are 3-port and 6-port Gigabit Ethernet time sensitive networking (TSN) switches with integrated security primarily designed for industrial Ethernet applications.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
Automotive-grade digital isolators
Telecoms, Datacoms, Wireless, IoT
The NSI83xx series of capacitive-based isolators from NOVOSENSE Microelectronics offer superior EOS resilience and minimal power noise susceptibility.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Wi-Fi in 2025: When is Wi-Fi 7 the answer?
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Wi-Fi 7 introduces multi-link operation and lower latency, a game-changing feature that allows devices to transmit and receive data across multiple frequency bands simultaneously to significantly reduce network congestion.

Read more...
Bluetooth Lite SoCs purpose built for IoT
NuVision Electronics Telecoms, Datacoms, Wireless, IoT
Whether it is enabling predictive maintenance on industrial equipment, tracking assets in dense environments, or running for years on a coin cell battery in ultra-low power sensors, developers need solutions that are lean, reliable, and ready to scale with emerging use cases.

Read more...
LTE Cat 1bis module
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The A7673X LTE Cat 1bis module from SimCom is engineered to meet the growing demands of the IoT industry, offering exceptional performance and seamless integration.

Read more...
Track with precision
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX provides innovative antennas for cellular, LTE-M, NB-IoT, LoRa, GNSS, BLE, UWB, Wi-Fi, and future Satellite IoT.

Read more...
Wi-Fi 7 front-end module
RF Design Telecoms, Datacoms, Wireless, IoT
The Qorvo QPF4609 is an integrated front end module designed for 802.11be systems that has integrated matching, which minimises layout area.

Read more...
Multi-channel downconverter
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Downconverter from Crane Aerospace is a converter that operates from 2 to 18 GHz and delivers a noise figure of 11 dB with an attenuation range of 25 dB.

Read more...