Telecoms, Datacoms, Wireless, IoT


Wireless data networks for wind farms

28 January 2004 Telecoms, Datacoms, Wireless, IoT

Stark against the horizon like giant palms reaching for the sky, their beauty and contribution to the environment are a matter of some discussion. But love them or hate them, wind-driven generators are here to stay and are almost certainly going to become even more pervasive. In fact a great deal of investment in wind farms for the production of electrical power is happening in several European countries as well as in the USA. And every wind farm represents a classic market opportunity for an integrated data network, turnkey project.

By definition, these farms are located in scarcely-populated windy areas such as hills, narrow valleys or cliffs open to the sea; all places where there is little, if any, coverage from the public communication networks.

On the other hand, the nature of the energy produced requires that it cannot be stored but must be used immediately at the very same moment it is generated. Consequently, wind farms are almost always connected to the national grid; normally via a substation. Here the outputs of all the turbines are combined and the voltage is transformed up, the power is metered for accounting purposes and transferred to the grid. Often there are several vendors (the producers of wind power), each with its own substation next to that of the grid. These substations are usually located in remote areas and - for environmentally-aesthetic reasons - are in hidden areas.

As with any advanced technology, each and every turbine needs to be carefully controlled and monitored. Further, there are maintenance teams who have to communicate with each other whilst in the field: typically between the ground and the top of the towers and from each tower to the control room, etc. In some instances it is also necessary to transmit video signals.

In situations where the area of operation is relatively small and the number of towers is limited, a dedicated network with high speed narrow band radio modems such as the Satelline-3AS models from Satel are more than adequate. Where the installation is spread over areas covering many hundreds of kilometres then the delay time introduced by the repetition of the UHF signals is no longer acceptable and more sophisticated networks are required, eg, a long distance microwave network transmitting in realtime with an adequate number of broadcasting points from which utilities up to 20 to 30 km are served.

For more information contact Satel SA, 011 887 2898.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Full sensor to cloud solution
CST Electronics Telecoms, Datacoms, Wireless, IoT
NeoCortec has demonstrated the seamless and rapid development of full sensor-to-cloud solutions using NeoMesh Click boards from MikroE and the IoTConnect cloud solution from Avnet.

Read more...
Long-range Wi-Fi HaLow module
TRX Electronics Telecoms, Datacoms, Wireless, IoT
One of Mouser’s newest products is the Morse Micro MM6108-MF08651-US Wi-Fi HaLow Module, which adheres to the IEEE 802.11ah standard.

Read more...
Quectel launches 3GPP NTN comms module
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the Quectel BG95-S5 3GPP non-terrestrial network (NTN) satellite communication module.

Read more...
SIMCom’s A7673x series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat.1 bis module based on the ASR1606 chipset, that supports wireless communication modes of LTE-FDD, with a maximum downlink rate of 10 Mbps and a maximum uplink rate of 5 Mbps.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Long-range connectivity module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Digi XBee XR 868 RF Modules support the deployment of long-range connectivity applications, and support point-to-point and mesh networking protocols.

Read more...
4G LTE-M/NB-IoT connectivity reference design
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Developed around the industry-leading Nordic nRF9160 module, the platform comes complete with a newly-developed LTE antenna, ATRIA, which is pre-certified to operate over the full LTE-M and NB-IoT bands.

Read more...
Antennas to meet all connectivity requirements
Electrocomp Telecoms, Datacoms, Wireless, IoT
Kyocera AVX RF antennas meet today’s connectivity demands in the LTE, Wi-Fi, Bluetooth, GNSS, and ISM wireless bands, available in surface mount, patch or external configurations.

Read more...
Introducing SIMCom’s new A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
18 W monolithic microwave amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The CHA8612-QDB is a two stage, high-power amplifier operating between 7,9 and 11 GHz. The monolithic microwave amplifier can typically provide 18 W of saturated output power and 40% of power-added efficiency.

Read more...