Power Electronics / Power Management


Battery selection and life expectancy

10 March 2004 Power Electronics / Power Management

A key issue in battery design is the service life, which may be a critical parameter when specifying a battery.

Determining the right power management solution for any battery-driven application is a critical decision. The choice of battery system affects everything from the size and shape of a device, to its ability to withstand extreme temperatures and environments, to the life expectancy of the product and/or battery.

The 'power budget'

Choosing the right battery starts with an in-depth understanding of your product's specific electrical requirements and potential use. You must understand the basic requirements for the following:

* Minimum, maximum, and nominal operating voltage.

* Power or current requirements.

* Continuous background current (if any).

* Pulse current amplitude and duration.

* Repetition rate if pulses are evenly dispersed, if not minimum, maximum, and nominal time between pulses.

* Storage and operating temperatures (minimum, maximum, and nominal).

* Available space allowed.

* Minimum battery lifetime desired.

Based on this initial information, the designer can work with a battery manufacturer to develop a 'power budget' - a mathematical formula that estimates battery life based on amperes-per-hour or watts-per-hour requirements over a given time and temperature. If the power budget indicates a battery life span of one month or less, rechargeable batteries may be ideal.

If the power budget indicates a battery life span from a few months up to one year, alkaline batteries may be the better answer. For longer-term applications, the design engineer will typically choose among primary lithium battery chemistries such as lithium manganese dioxide (Li/MnO2), lithium sulfur dioxide (Li/SO2), and lithium thionyl chloride (Li/SOCl2) (see Table 1).

Table 1. Lithium battery chemistries
Table 1. Lithium battery chemistries

Factoring in life expectancy

The formula for determining actual battery life expectancy is reasonably complex, requiring proprietary data that factor in a number of variables to determine the required capacity to deliver an expected run time. In addition to variables such as voltage, background current, and pulse profiles, the formula also factors in how the required temperature range will affect both the battery voltage, and, most important, the self-discharge rate of the battery.

Temperature has a significant impact on battery performance and life expectancy. If the application is designed for cold temperatures (below -20°C), such requirements can prove problematic for certain battery chemistries, since a cold electrolyte becomes less active, leading to higher internal resistance, which may lead to battery failure. When subjected to extremely high temperatures (above +40°C), certain battery chemistries and mechanical sealing techniques start to fail, affecting both short-term performance and long-term reliability.

Self-discharge: a key variable

The self-discharge rate of a cell is governed by its electrolyte composition, its production processes, and its construction. As a general rule, the greater the cell's internal surface area, the greater the self-discharge rate. In addition, high-rate spiral cells with large surface areas have inherently higher self-discharge rates compared to bobbin-type cells of equal size that use the same chemistry.

A lesser-known fact that impacts battery self-discharge involves impurity levels in the electrolyte. Through years of study and fine-tuning the electrolyte production processes, experienced battery manufacturers have found ways to lower battery self-discharge rates by reducing electrolyte impurities and parasitic reactions to nominal levels.

Impedance

Battery life is also affected by impedance. Unfortunately, battery impedance is not a nice stable number, but rather one that varies by time, temperature, and the mechanical environment it must operate within. Impedance is measured by the internal resistance developed not only in the electrolyte, but also in the cathode and anode. Impedance can also rise as a result of electrolyte loss, as might occur in a consumer Li/MNO2 coin cell. Even though the coin cell's seal remains intact, being in an elevated temperature environment can cause the electrolyte to simply diffuse through the seal. With less liquid available, the impedance rises. Other battery chemistries can be affected by certain types of pulses that can clog the cathode with by-products of the reaction, causing a rise in impedance, measurable through a reduction in load voltage.

Different chemistries have different theoretical impedances. As noted, impedance can change with temperature, discharge time, and vibration. However, by blending special additives with the electrolyte, impedance levels can be controlled by the battery manufacturer.

Real-life considerations

In determining the ideal power solution, the design engineer must factor in a number of real life as well as theoretical considerations. How the product will be used is often as important a factor as the product's design:

* Operating environment. As discussed, extreme cold and heat can cause failure or limit the performance of some battery chemistries. Also, how will elevated temperatures affect battery lifetimes and performance?

* Battery safety. Does the application involve high levels of shock and vibration? What are the potential consequences if the battery leaks if crushed or punctured? Does the battery need to be UL listed?

* Size and weight. Are there practical limits as to how small and lightweight the device must be? When size and weight constraints are important, you must typically opt for the battery with the highest energy density to pack the most performance into the smallest space with the least weight.

* Voltage requirements. Battery voltage is inherent to the type of chemistry. However, load voltage can be affected by the battery's impedance, which some battery manufacturers manipulate with electrolyte additives and capacitors. For example, Tadiran offers battery packs with integrated hybrid layer capacitors to deliver a complete solution.

For more information contact Quintin van den Berg, Arrow Altech Distribution, 011 923 9600, [email protected]



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The role of bidirectional charging in the evolving energy landscape
Avnet Silica Power Electronics / Power Management
As reliance on renewable sources like wind and solar continues to grow, the need for efficient energy flow and storage solutions has become more critical than ever.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
How to calculate a buck converter’s inductance
Power Electronics / Power Management
In the buck circuit, the inductor design is a key element that is closely related to system efficiency, the output voltage ripple, and loop stability.

Read more...
SmartRAID 4300 Series
Altron Arrow DSP, Micros & Memory
Microchip’s disaggregated architecture leverages host CPU and PCIe infrastructure to overcome traditional storage bottlenecks in scalable, secure NVMe RAID storage solutions.

Read more...
High-current EMI filters
Accutronics Power Electronics / Power Management
TDK has introduced 20 and 40 A, 80 V DC board-mount EMI filters, reducing differential mode conducted emissions for switching power supplies with high input current requirements.

Read more...
Isolated SMD DC-DC converters
iCorp Technologies Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Bluetooth wireless SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
he EFR32BG29 wireless SoC from Silicon Labs is a highly efficient, high memory, low-power, and ultra compact SoC designed for secure and high-performance wireless networking for IoT devices.

Read more...
Next-gen power meter
Electrocomp Express Power Electronics / Power Management
The VT-PWR-LV is a next-gen Vista Touch power meter from Trumeter for single, split, and three-phase systems.

Read more...
Wi-Fi 6 and Bluetooth LE co-processor
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released its ST67W611M1, a low-power Wi-Fi 6 and Bluetooth LE combo co-processor module.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved