Ultra-low-power radio provides scaleable platform for medical implant applications

9 March 2005 News

Cambridge Consultants has designed an intelligent radio transceiver architecture that it claims introduces a new level of power economy and performance for in-body medical diagnostic and therapeutic applications. The design is intended for implementation on system-on-chip (SoC) solutions and provides a control and communications platform suitable for implantable medical devices. The device will operate in the Medical Implant Communications Service (MICS) frequencies.

A key attribute of Cambridge Consultants' design is exceptional power economy, and the architecture would consume an average current of less than 1 μA, and less than 1,7 mA peak for a 0,05% duty-cycle, 400 Kbps bi-directional communications application, it says. This could provide over 10 years of activity from a lithium cell, for example. However, flexibility built into the radio design also allows the chip to be used for other systems with short-term high data rate communications requirements - such as swallowable video imaging.

"Advances in electronics technology are enabling a host of new implantable applications, and this design draws on three of those trends: ultra low power consumption provided by cost-effective CMOS/BiCMOS processes, enhanced radio performance through lean microcontroller and low-power DSP digital cores, and extreme miniaturisation enabled by system-on-chip integration capabilities," says Richard Traherne, head of Cambridge Consultants' wireless business unit.

"Combined with the opportunities offered by the MICS frequency allocation - which is emerging as a worldwide standard endorsed by the FCC and ETSI - we see great demand for an optimised single-chip wireless platform that delivers the economy required for mass-volume medical applications."

The new implantable transceiver design, called SubQore, makes use of the company's portfolio of IP for ultra-low power radio, as well as its lean RISC processor core, XAP. Extreme attention to power economy has been applied throughout the design.

Each implantable medical application is different and requires a particular mix of control, monitoring and communications facilities. SubQore's architecture reflects this diversity of potential use. In its basic form, it employs digital phase-shift keying (PSK) data modulation - a highly power-efficient scheme. However, the hardware that controls modulation has been designed to provide a degree of digital signal processing flexibility, to support the use of higher-efficiency schemes for more demanding applications such as video transfer. The XAP microcontroller core provides similar flexibility, and can be equipped with a range of digital and analog I/O - and memory sizes - to suit the application.

The SubQore radio operates in the 402-405 MHz 'MICS' frequency band, and the company says it offers a communications range of 2 m when implanted under the skin. The only other use of this band is for meteorological equipment, which minimises the potential for interference.

For more information contact Cambridge Consultants, 0944 1223 420024,

Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor’s desk: Are electromagnetic waves culpable in making us sick?
30 June 2020, Technews Publishing , News
When I started writing my column for this issue, I was determined to come up with a topic and a way to avoid mentioning the ‘C’ word. I came close – you will only find ‘COVID-19’ mentioned once or twice ...

To fake or not to fake
30 June 2020 , News
Prof. Johan Meyer explores the complex and controversial topic of the potential link between the global rollout of 5G networks and the COVID-19 pandemic.

Clearing the Static: Curb the spread of COVID-19 with stringent floor hygiene
30 June 2020, Actum Electronics , News
According to the World Health Organisation (WHO), COVID-19 is primarily transmitted from person to person through respiratory droplets that emerge from the nose and mouth when an infected person speaks, ...

Personality profile: Warren Mande
30 June 2020, Altron Arrow , News
“It is said that “culture eats strategy for breakfast”. Look to join companies whose culture fits your personal belief system.”

Not the end, but a journey
30 June 2020, ExecuKit , News
ExecuKit’s Renita Fleischer and Elizna Classen offer local companies a route to help them navigate their way through what has become the ‘new normal.’

Elmatica CEO to vice chair IPC cybersecurity task group
30 June 2020, Elmatica , News
Didrik Bech, CEO of printed circuit broker Elmatica, has been appointed to serve as vice chair for IPC’s new cybersecurity task group. The 2-12c Task Group leadership is a representation of IPC as an ...

From the editor’s desk: Making and sending things to space
29 May 2020, Technews Publishing , News
In this issue, one of the topics we are featuring is the aerospace and military/defence sector. The feature includes an analysis of what it takes to successfully design and manufacture products in this ...

Electronics news digest
29 May 2020, Technews Publishing , News
South Africa • Acting minister of communications and digital technologies, Jackson Mthembu, joined the world in observing World Telecommunication and Information Society Day (WTISD). Proclaimed by the ...

Personality profile: David Power
29 May 2020, Cadshop , News
“Aspire to work for a company that you admire, and for a boss that you want to serve, that shares your passion and motivation.”

Designing for military and defence applications
29 May 2020, Omnigo, Kreon Technology , News
No business can stand on its own without strong partnerships and stakeholder relationships. In this regard the military and defence industry is no exception.