DSP, Micros & Memory


Unique technology automates embedded application development

19 April 2006 DSP, Micros & Memory

Binachip, a new embedded applications automation company, has developed technology that automates the process of creating high-performance embedded applications, claiming to slash design times from months to days. Binachip, whose core technology evolved from work done at Northwestern University in Illinois, has unveiled plans to offer tools that convert embedded-software binary code into FPGA hardware implementations.

The company's Binachip-FPGA tool will generate RTL code for hardware implementations but is aimed primarily at embedded-software developers who want to accelerate their applications by putting computationally intensive routines into silicon.

According to the company, the process works as follows:

Computationally intensive realtime applications such as voice/video-over-IP, 3G and 4G wireless communications, MP3 players, JPEG and MPEG encoding/decoding, require an integrated hardware/software platform for optimal performance. Parts of the application run in software on a general purpose processor and other portions need to run on application-specific hardware to meet performance requirements.

Binachip enables embedded systems developers to make hardware/software tradeoffs for optimal performance. It also allows migration of software from older general-purpose embedded processors onto hardware and mixed hardware/software platforms of the future. It automates the translation of software assembly and binaries onto mixed hardware/software platforms, thereby reducing design times from months to days.

Embedded applications are typically developed in a high level such as C/C++ or MATLAB and then compiled into a general purpose processor binary, or they may be available only in binary form from previous legacy designs. Binachip takes this binary, performs automated hardware/software co-design at the assembly language level, and generates software code for the target processor, and RTL VHDL and Verilog code that can be implemented on an FPGA.

"Binachip is the only company that starts with binaries rather than a high-level language and can do fine-grain mapping," according to industry analyst Will Strauss, president of Forward Concepts. "I look for them to do a lot to enable high-performance embedded applications in the DSP space."

Binachip-FPGA is the company's first product. Using standard profiling tools, the user determines if a portion of the binary code will benefit from a hardware implementation. If so, it automatically compiles it into hardware, and the appropriate hardware/software interfaces are generated, while the remaining code is translated into binary for the target processor. Depending on the application, the resulting implementation can provide a 10X to 50X speedup over a pure software implementation, claims Binachip.

www.binachip.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

ESP32-C6 achieves PSA-L2
iCorp Technologies DSP, Micros & Memory
Espressif Systems recently announced that its ESP32-C6 microcontroller has achieved PSA Certified Level 2 (PSA-L2) security certification, making it the first RISC-V-based MCU to reach this level.

Read more...
Microprocessor with integrated NPU
Avnet Silica DSP, Micros & Memory
The RZ/G3E from Renesas is a microprocessor integrated with quad CPU and NPU in one chip, improving power efficiency, reliability, and security.

Read more...
Nordic Semiconductor launches nRF Connect SDK Bare Metal option for nRF54L series
Avnet Silica DSP, Micros & Memory
This is a new, RTOS-independent software solution for Bluetooth LE development, designed to ease developers’ migration from the legacy nRF5 SDK and nRF52 series to the next-generation nRF54L series.

Read more...
Dual-core support in NECTO Studio
DSP, Micros & Memory
MIKROE recently announced that version 7.3.0 of its NECTO Studio Integrated Development Environment now supports dual-core MCUs, allowing designers to program and debug each core independently.

Read more...
Post Quantum Cryptographic firmware library
DSP, Micros & Memory
The STM32 post-quantum cryptographic library enables developers to satisfy application requirements for any combination of data integrity, confidentiality, identification/authentication, and nonrepudiation.

Read more...
MultiVolt series of oscillators
Future Electronics DSP, Micros & Memory
The ECS-3225MVQ from ECS Inc. is a compact, quartz-based MultiVolt oscillator designed for precision timing in automotive, industrial, and portable electronic systems.

Read more...
MCU platform for battery-powered devices
Altron Arrow DSP, Micros & Memory
The MCX W23 is a new dedicated wireless MCU platform from NXP for battery-powered sensing devices.

Read more...
Drive innovation with AURIX TriCore MCUs
Future Electronics DSP, Micros & Memory
Infineon’s AURIX TriCore family balances safety, performance, and energy efficiency to offer a scalable and future-ready portfolio.

Read more...
Elevate your motor control designs
EBV Electrolink DSP, Micros & Memory
Built on an Arm Cortex-M33 core running up to 180 MHz, the MCX A34 family combines high-performance math acceleration and advanced motor control subsystems to unlock efficient motor drive solutions.

Read more...
Embedded platform for compute-intensive applications
iCorp Technologies DSP, Micros & Memory
The Quectel QSM368ZP-WF is a fully featured embedded ARM platform optimised for compute-intensive industrial and IoT applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved