Power Electronics / Power Management


The switching power supply: a primer

31 May 2006 Power Electronics / Power Management

The switching power supply has replaced the linear power supply gradually. It is widely used in all kinds of electronic equipment, including module type sources, driver type sources, UPS and battery chargers. Applications of switching power supplies can be found in many industrial and commercial areas.

Switching power supplies are a large improvement on the high volume, heavy weight and low efficiency of linear power supplies. The principle of operation of the switching power supply is shown in Figure 1. It connects directly from the AC power (off-line) without going through the low-frequency transformer. Because of the high input AC voltage, the buck capacitor can be smaller. Switching power supplies use high-frequency transistors to chop the high DC voltage (rectified from AC source) into a high AC voltage and then convert it into the rated voltage through the high frequency transformer. It is then rectified into the rated DC voltage. Due to the high frequency switching, there are ripple noises generated from the switching transients, which need to be taken care of.

Figure 1. Principle of operation of a typical SMPS
Figure 1. Principle of operation of a typical SMPS

Switching power supply circuit theory

Among all the DC-to-DC converters, SMPS (switch mode power supplies) can be divided into three basic circuit structures based on input voltage, output voltage and polarity:

* Step-down or buck converter: used for output voltage lower than input voltage.

* Step-up or boost converter: used for output voltage higher than input voltage.

* Inverter or buck-boost converter: the third one is used when the output polarity is inverted from the input. This kind of circuit can also be used in both step-up and step-down conditions.

If we need to isolate the input and output, the above three basic circuits cannot be used any more. Instead we must convert these three types to Forward type, Flyback type, Half-bridge type, Push-pull type, or Full-bridge type circuit structures. There are two ways to generate the switching signal: one is the self-oscillation circuit where its frequency is decided by output load and input voltage; the other is the pulse-width modulator (PWM) IC where its frequency is decided by the control IC.

Non-isolated types

* Buck regulator: when the switch is ON, power is transferred to the load through L1 and also stored in L1 at the same time. When the switch is OFF, power will be supplied by L1 and transferred to the load through D1 and L1.

Figure 2. Buck regulator
Figure 2. Buck regulator

* Boost regulator: when the switch is ON, power is stored in L1. When the switch is OFF, power will be transferred to the output load through L1 and D1. Output voltage can be higher than the input because of the pre-stored voltage at L1.

Figure 3. Boost regulator
Figure 3. Boost regulator

* Buck-boost regulator: when the switch is ON, the power is stored in L1. When the switch is OFF, the power is transferred to the output load through L1 and D1.

Figure 4. Buck-boost regulator
Figure 4. Buck-boost regulator

Isolated types

* Flyback converter: when the mosfet (switch) is ON, the power is stored in the transformer, and when the mosfet is OFF, the power is transferred to output load from the transformer.

Figure 5. Flyback converter
Figure 5. Flyback converter

* Forward converter: when the mosfet (switch) is ON, the power is transferred to the output and stored in L1 through D1 and the transformer. When the switch is OFF, the power stored in L1 will be transferred to the load through D2.

Figure 6. Forward converter
Figure 6. Forward converter

* Push-pull converter: when switch 1 is ON (switch 2 is OFF), power is transferred to the output load through the transformer and D1. When switch 2 is ON (switch 1 is OFF), power is transferred to the output load through the transformer and D1.

Figure 7. Push-pull converter
Figure 7. Push-pull converter

* Half-bridge converter: when switch 1 is ON (switch 2 is OFF), power is transferred to the output load through the transformer, C2, and D1. When switch 2 is ON (switch 1 is OFF), power is transferred to the load through the transformer, C1, and D2.

Figure 8. Half-bridge converter
Figure 8. Half-bridge converter

* Full-bridge converter: when switches 1 and 4 are ON, switch 2,3 are OFF), power is transferred to the output load through the transformer and D2. When switches 2 and 3 are ON (switches 1 and 4 are OFF), power is transferred to the load through the transformer and D1.

Figure 9. Full-bridge converter
Figure 9. Full-bridge converter

The characteristics of each type are shown in Table 1. For assistance and advice about your power supply requirements, contact your local MeanWell representative.

Table 1. Characteristics of each circuit type
Table 1. Characteristics of each circuit type



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Cutting-edge solutions for Africa’s clean energy future
Power Electronics / Power Management
As Africa pushes towards reliable, affordable, and sustainable energy, Sungrow is driving transformation with cutting-edge innovations that enhance grid stability, reduce energy costs, and expand access to clean power.

Read more...
Transformer protection is a critical safeguard for municipal power stability
Power Electronics / Power Management
Transformer protection is not just a technical requirement; it is a vital component in ensuring the resilience and operational integrity of South Africa’s municipal power infrastructure.

Read more...
Reliable power solution
Conical Technologies Power Electronics / Power Management
The Mibbo MLD-120W-xxVx is a robust DIN-rail mounted DC-DC converter with a 120 W output capacity specifically designed for industrial and automation applications.

Read more...
Easing the path for IPPs navigating local energy regulations
Power Electronics / Power Management
Independent Power Producers (IPPs) and developers venturing into South Africa’s renewable energy sector face an onerous and challenging regulatory landscape characterised by uncertainty in securing grid connections and considerable development costs.

Read more...
Wide input voltage buck-boost converter
Altron Arrow Power Electronics / Power Management
The MAX77859 from Analog Devices is a high-efficiency, high-performance buck-boost converter targeted for systems requiring a wide input voltage range of between 2,5 and 22 V.

Read more...
High-density power module for AI at the edge applications
Altron Arrow Power Electronics / Power Management
The MCPF1412 power module from Microchip has integrated I2C and PMBus interfaces for flexible configuration and monitoring.

Read more...
Development kit for TI’s SN6507
Power Electronics / Power Management
This comprehensive solution is designed to help engineers evaluate the performance of TI’s SN6507 transformer driver for isolated power supplies.

Read more...
High-voltage IGBT
Hi-Q Electronics Power Electronics / Power Management
Diotec Semiconductor has launched the DIW030M060 IGBT, a 600 V, 30 A device with a built-in reverse diode.

Read more...
DC converter for Hi-Rel applications
Vepac Electronics Power Electronics / Power Management
The MFK2812S from Crane Aerospace & Electronics is a DC-DC converter with an input voltage range of 16 to 50 V and an output of 12 V at up to 2,08 A.

Read more...
Distributed Energy Resource Management Systems
Schneider Electric South Africa Power Electronics / Power Management
In addition to grid stability, DERMS also play a role in energy trading with some countries leveraging DERMS for real-time energy trading.

Read more...