Power Electronics / Power Management


The switching power supply: a primer

31 May 2006 Power Electronics / Power Management

The switching power supply has replaced the linear power supply gradually. It is widely used in all kinds of electronic equipment, including module type sources, driver type sources, UPS and battery chargers. Applications of switching power supplies can be found in many industrial and commercial areas.

Switching power supplies are a large improvement on the high volume, heavy weight and low efficiency of linear power supplies. The principle of operation of the switching power supply is shown in Figure 1. It connects directly from the AC power (off-line) without going through the low-frequency transformer. Because of the high input AC voltage, the buck capacitor can be smaller. Switching power supplies use high-frequency transistors to chop the high DC voltage (rectified from AC source) into a high AC voltage and then convert it into the rated voltage through the high frequency transformer. It is then rectified into the rated DC voltage. Due to the high frequency switching, there are ripple noises generated from the switching transients, which need to be taken care of.

Figure 1. Principle of operation of a typical SMPS
Figure 1. Principle of operation of a typical SMPS

Switching power supply circuit theory

Among all the DC-to-DC converters, SMPS (switch mode power supplies) can be divided into three basic circuit structures based on input voltage, output voltage and polarity:

* Step-down or buck converter: used for output voltage lower than input voltage.

* Step-up or boost converter: used for output voltage higher than input voltage.

* Inverter or buck-boost converter: the third one is used when the output polarity is inverted from the input. This kind of circuit can also be used in both step-up and step-down conditions.

If we need to isolate the input and output, the above three basic circuits cannot be used any more. Instead we must convert these three types to Forward type, Flyback type, Half-bridge type, Push-pull type, or Full-bridge type circuit structures. There are two ways to generate the switching signal: one is the self-oscillation circuit where its frequency is decided by output load and input voltage; the other is the pulse-width modulator (PWM) IC where its frequency is decided by the control IC.

Non-isolated types

* Buck regulator: when the switch is ON, power is transferred to the load through L1 and also stored in L1 at the same time. When the switch is OFF, power will be supplied by L1 and transferred to the load through D1 and L1.

Figure 2. Buck regulator
Figure 2. Buck regulator

* Boost regulator: when the switch is ON, power is stored in L1. When the switch is OFF, power will be transferred to the output load through L1 and D1. Output voltage can be higher than the input because of the pre-stored voltage at L1.

Figure 3. Boost regulator
Figure 3. Boost regulator

* Buck-boost regulator: when the switch is ON, the power is stored in L1. When the switch is OFF, the power is transferred to the output load through L1 and D1.

Figure 4. Buck-boost regulator
Figure 4. Buck-boost regulator

Isolated types

* Flyback converter: when the mosfet (switch) is ON, the power is stored in the transformer, and when the mosfet is OFF, the power is transferred to output load from the transformer.

Figure 5. Flyback converter
Figure 5. Flyback converter

* Forward converter: when the mosfet (switch) is ON, the power is transferred to the output and stored in L1 through D1 and the transformer. When the switch is OFF, the power stored in L1 will be transferred to the load through D2.

Figure 6. Forward converter
Figure 6. Forward converter

* Push-pull converter: when switch 1 is ON (switch 2 is OFF), power is transferred to the output load through the transformer and D1. When switch 2 is ON (switch 1 is OFF), power is transferred to the output load through the transformer and D1.

Figure 7. Push-pull converter
Figure 7. Push-pull converter

* Half-bridge converter: when switch 1 is ON (switch 2 is OFF), power is transferred to the output load through the transformer, C2, and D1. When switch 2 is ON (switch 1 is OFF), power is transferred to the load through the transformer, C1, and D2.

Figure 8. Half-bridge converter
Figure 8. Half-bridge converter

* Full-bridge converter: when switches 1 and 4 are ON, switch 2,3 are OFF), power is transferred to the output load through the transformer and D2. When switches 2 and 3 are ON (switches 1 and 4 are OFF), power is transferred to the load through the transformer and D1.

Figure 9. Full-bridge converter
Figure 9. Full-bridge converter

The characteristics of each type are shown in Table 1. For assistance and advice about your power supply requirements, contact your local MeanWell representative.

Table 1. Characteristics of each circuit type
Table 1. Characteristics of each circuit type



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

RF arrestor provides robust protection
RFiber Solutions Power Electronics / Power Management
NexTek’s range of coaxial RF surge and lightning arrestors are designed and built to provide robust protection for any radio or coaxial RF transmission application.

Read more...
Wide-Bandgap Developer Forum 2025
Power Electronics / Power Management
To give designers the ultimate in design flexibility, the entire range of WBG power semiconductors will be provided including discretes, modules, and highly integrated solutions ranging from 40 V to 700 V for GaN and 400 V to 3,3 kV for SiC.

Read more...
Latest MotorXpert software drives FOC motors without shunts or sensors
EBV Electrolink Power Electronics / Power Management
Power Integrations has announced MotorXpert v3.0, a software suite for configuration, control and sensing of BLDC inverters that utilise the company’s BridgeSwitch motor-driver ICs.

Read more...
New 5 kW and 8 kW hybrid inverters
Current Automation Power Electronics / Power Management
Switching time from on-grid to off-grid mode is a rapid 5 ms allowing for protection of sensitive electronic equipment.

Read more...
Power relays for energy management applications
Future Electronics Power Electronics / Power Management
The Panasonic Industry HE-R Series is an energy management relay designed for single-phase or 3-phase AC charging units, combining high capacity, high switching, and low operating power into a small size power relay.

Read more...
Programmable switching DC PSU series
Vepac Electronics Power Electronics / Power Management
The SPS6000X Series from Siglent is a programmable switching DC power supply with a wide range of single output and constant power features.

Read more...
Tiny MLCCs at 1250 V
RS South Africa Power Electronics / Power Management
TDK Corporation has expanded its CGA series for automotive and C series for commercial multilayer ceramic capacitors to 10 nF at 1250 V in 3225 size.

Read more...
PMIC extends life of BLE products
Avnet Silica Power Electronics / Power Management
Nordic Semiconductor’s nPM2100 PMIC incorporates an ultra-efficient boost regulator and a wide range of energy-saving features to significantly extend operating time in non-rechargeable battery applications.

Read more...
PCB-mount 40 W converter
Vepac Electronics Power Electronics / Power Management
With an ultra-compact 2,5 x 2,5 mm package and a high-power density of 93 W/in3, these converters are optimised for efficiency and space-saving designs.

Read more...
Upgraded multiphase power inductor
iCorp Technologies Power Electronics / Power Management
The increased demand for computing power in data centres has resulted in the development of multi-phase ultra-low profile, ultra-high current copper magnetic co-fired power inductors.

Read more...