Analogue, Mixed Signal, LSI


Clock jitter issues in undersampling applications

2 May 2007 Analogue, Mixed Signal, LSI

In undersampling applications, including wideband receivers, cellular base stations and communication receivers, the undersampled signal has a relatively low bandwidth.

However, the carrier frequency associated with this signal is high enough for timing inconsistencies, such as clock jitter (or phase noise) and A/D converter aperture jitter, to increase noise as the signal passes through the A/D converter. Large amounts of jitter can make the A/D converter block unusable for this type of system.

There are three main noise sources in this type of application: quantisation noise of the converter (or the AC differential non-linearity error), the internal converter thermal noise and the system jitter. The converter quantisation noise and thermal noise have a direct effect on the signal-to-noise ratio (SNR) of the converter, but the only means of controlling them is by careful selection of the converter.

The system jitter comprises the aperture jitter of the sample-hold switch at the input of the A/D converter, and the sampling clock jitter. Aperture jitter is the sample-to-sample variation timing of the input switch of the A/D converter. This specification can be found in the product data sheet. Clock jitter is an artefact of clock variation from cycle to cycle. These two uncorrelated jitter noise sources should be combined using the root-sum-square formula, or tJITTER = (tJCLOCK² + tJADC²) in psRMS, where tJITTER is the total jitter of the system, tJCLOCK is the jitter from the external A/D converter clock and tJADC is the jitter of the A/D converter input sampling switch.

It is not possible to change the application circuit to improve the aperture jitter of the converter. However, the clock jitter can be improved by using one of several techniques.

In a typical application, the external clock controls the sampling frequency or speed of successive conversions. Assuming that there are no phase shifts in the analog input signal, clock jitter causes sampling time uncertainty (Figure 1). This uncertainty affects the SNR of the conversion. The theoretical impact on SNR, due to jitter from the clock as well as jitter from the A/D converter sampling mechanism, is SNR (dBc) = -20 log10 (2π fIN tJITTER), where fIN is the analog input frequency.

Figure 1. A variation of phase or jitter in the converter’s clock input causes a deviation in the sampling time of the A/D converter analog input signal. This produces degradation in conversion accuracy, which is quantified by the converter’s SNR performance
Figure 1. A variation of phase or jitter in the converter’s clock input causes a deviation in the sampling time of the A/D converter analog input signal. This produces degradation in conversion accuracy, which is quantified by the converter’s SNR performance

A clock with low jitter or phase noise is therefore needed to drive the A/D converter in undersampling systems. The clock can be digital or sinusoidal, each offering its own advantages and disadvantages. Digital clocks have a very fast slewing transition, which helps to reduce clock jitter, but the fast edges of these clocks create wideband noise that is aliased back into the signal bandwidth. A sinusoidal clock may be a suitable alternative, depending on the application and layout, but most have higher rms near-band jitter. Most A/D converter data sheets provide clock recommendations.

Another choice to be made for most undersampling A/D converters is between differential and single-ended clock inputs. Single-ended clocks must have a clock slope of about 1 V/ns or better, so they are not suitable for sine-wave clocks. Also, the voltage swing of the single-ended clock must be limited to avoid the clock signal bumping into supply rails, turning on internal protection devices. Differential clock signals double the voltage range of the clock. The converter also does some common-mode rejection of noise signals.

It is important to take clock phase noise or jitter into account when planning a clock strategy for an undersampling A/D converter. The chosen clock source need not be expensive, but should be low noise.

For more information contact Arrow Altech Distribution, +27 (0)11 923 9600, Avnet Kopp, +27 (0)11 809 6100, Electrocomp, +27 (0)11 458 9000, Future Electronics, +27 (0)31 262 7743 or Tempe Technologies, +27 (0)11 452 0530.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ultra-low power MEMS accelerometer
Altron Arrow Analogue, Mixed Signal, LSI
Analog Devices’ ADXL366 is an ultra-low power, 3-axis MEMS accelerometer that consumes only 0,96 µA at a 100 Hz output data rate and 191 nA when in motion-triggered wake-up mode.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
MCU platform for battery-powered devices
Altron Arrow DSP, Micros & Memory
The MCX W23 is a new dedicated wireless MCU platform from NXP for battery-powered sensing devices.

Read more...
BT Audio 4 Click board
Dizzy Enterprises Analogue, Mixed Signal, LSI
The BT Audio 4 Click board from MIKROE provides high-quality wireless audio streaming and data comms over Bluetooth.

Read more...
Precision MEMS IMU modules
Altron Arrow Analogue, Mixed Signal, LSI
The ADIS16575/ADIS16576/ADIS16577 from Analog Devices are precision, MEMS IMUs that includes a triaxial gyroscope and a triaxial accelerometer.

Read more...
Altron Arrow introduces GX10 supercomputer
Altron Arrow AI & ML
Powered by the NVIDIA GB10 Grace Blackwell superchip, this is desktop-scale AI performance previously only available to enterprise data centres.

Read more...
MEMS with embedded AI processing
Altron Arrow Analogue, Mixed Signal, LSI
STMicroelectronics has announced an inertial measurement unit that combines sensors tuned for activity tracking and high-g impact measurement into a single, space-saving package.

Read more...
Multicore CPUs with on-chip accelerators
Altron Arrow DSP, Micros & Memory
NXP’s MCX N94x and N54x MCUs offer advanced features for consumer and industrial applications, including connectivity, security, and power management.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
High-performance IMU
RS South Africa Analogue, Mixed Signal, LSI
TDK Corporation has announced availability of the new InvenSense SmartMotion ICM-536xx family of high-performance 6-axis IMUs.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved