Telecoms, Datacoms, Wireless, IoT


Building high-end Ethernet functionality into SDH networks: an introduction

16 May 2007 Telecoms, Datacoms, Wireless, IoT

Metro networks have seen a large amount of churn over the last few years. Given that the MAN (metro area network) is the first part of the network in offering customer services, the mix of technology in the MAN could enable or hinder the service provider from providing newer services. Also, a MAN is characterised by a higher order of magnitude of devices, and hence the cost and complexity of the technology has a direct impact on the profitability of the network.

Several technologies have been strong contenders for deployment in metro networks. Traditionally, SDH (synchronous digital hierarchy)/SONET (synchronous optical network) has dominated Metro networks. Traditional SDH/SONET was a hierarchical TDM technology that provided speeds of up to 2,5 Gbps in the metro. Since voice represented a majority of the traffic in the metro in the previous decade, a circuit-oriented technology like first-generation SDH/SONET suited the needs just fine.

Next-generation SDH/SONET

Given the large installed base of SDH/SONET and increasing demand for data services, significant efforts have been made towards data-optimising SDH/SONET networks. Next-generation SDH/SONET (NG SDH/SONET), which came into existence around 2002, has three important components: virtual concatenation (VCAT) (ITU-T G.707/Y.1322 and G.783), link capacity adjustment scheme (LCAS) (ITU-T G.7042/Y.1305) and generic framing procedure (GFP) (ITU-T G.7041 (2001) and ANSI T1.105.02 (2002)). The above protocols help SDH/SONET efficiently carry data, and lend flexibility and dynamism to SDH networks. However, just next-generation SDH/SONET itself can only help realise point-to-point Ethernet services. The full power of Ethernet can only be realised by integrating Ethernet switching into a network.

Why Ethernet switching

The biggest disadvantage of traditional SDH/SONET is the use of dedicated point-to-point circuits. This implies that when a customer is assigned a VC-12 (the smallest unit of an SDH network, a 2 Mbps pipe), the 2 Mbps pipe is reserved for that customer, whether he uses it or not (Figure 1). When the customer does not use this bandwidth, it cannot be re-claimed by another customer. Another disadvantage is the lack of flexibility. If the customer required another 2 Mbps, the equipment will have to be cross-connected again, and another pipe of 2 Mbps will be assigned.

Figure 1. Traditional SDH Node cross-connects circuits
Figure 1. Traditional SDH Node cross-connects circuits

Ethernet takes advantage of statistical multiplexing. In Ethernet, all data travels in one pipe, rather than hierarchically aggregated pipes (such as VC-12s in SDH). This implies that if a certain customer is not using the 2 Mbps assigned to him, another customer can use it. This results in a significant amount of bandwidth efficiency in the network. Another advantage of Ethernet is the flexibility it provides. If the bandwidth requirement at a certain Ethernet switch goes up, more traffic can be pumped into the same port (or another port on the same equipment) without any configuration. Thus, bandwidth efficiency and upgradeability are the strongest points in favour of introducing Ethernet switching in the network (Figure 2).

Figure 2. Ethernet switch takes and puts back data into one common pipe
Figure 2. Ethernet switch takes and puts back data into one common pipe

However, Ethernet has traditionally had poor OAM capabilities, which arises from its roots in the local area network. And Ethernet performs poorly in delivering carrier-class services like voice across the network.

Integrating Ethernet switching into next-generation SDH/SONET

The true power of Ethernet and SDH can be realised by integrating Ethernet switching into an SDH network. In this case, a set of pipes in the network can function as a virtual Ethernet pipe as shown in Figure 3. Each node would behave like an SDH ADM or an Ethernet switch based on the pipe the traffic is being carried in.

Figure 3. An SDH MSPP with Ethernet switching functionality
Figure 3. An SDH MSPP with Ethernet switching functionality

An Ethernet switching network on NG-SDH/SONET is proving to be a very popular option for deployment in metro networks (Figure 4). Point-to-point as well as advanced point-to-multipoint, and multipoint-to-multipoint Ethernet/IP services such as video, VoIP (voice over IP) and virtual private networks can be delivered over existing SDH/SONET networks - incrementally, and in parallel with traditional TDM services such as voice and private lines. This feature is the strongest point in favour of Ethernet-over-SDH, given that there are significant SDH/SONET deployments in place in the metro. For example, a service provider could start with a virtual 10 Mbps Ethernet pipe (consisting of 5 VC-12 SDH pipes) and then gradually increase it to 50 Mbps (25 VC-12 SDH pipes) as demand for these services increases.

Figure 4. Logical view of an Ethernet switched sub-network in an NG-SDH network
Figure 4. Logical view of an Ethernet switched sub-network in an NG-SDH network

Conclusion

For now, NG-SDH seems to have its roots firmly entrenched in service provider networks. Given the ubiquitous presence of SDH in the metro, incrementally offering high-end Ethernet services over this SDH network would be the best way of packetising the metro. This approach ensures that the service provider can start offering risky but more profitable data services without letting go of 'cash cow' voice services. The incremental nature of this approach should also alleviate the risk of introducing these new data services into the network. The high comfort-levels network operators have with NG-SDH, and NG-SDH's strong OAM features, combine well with the flexibility and efficiency of Ethernet to give the service provider the best of both worlds.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Quectel partners with GEODNET
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has partnered with GEODNET to deliver Quectel’s Real-Time Kinematic (RTK) correction services, enabling high-precision positioning for IoT applications.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Futureproofing IoT connectivity
SIMcontrol Telecoms, Datacoms, Wireless, IoT
A managed private APN assigns every device to an isolated carrier slice, producing a single ingress to the enterprise network, with traffic bypassing shared internet paths and reducing exposure.

Read more...
Extra slim 2,4 GHz radio module
Telecoms, Datacoms, Wireless, IoT
The Thyone I radio module from Würth Elektronik now has a little sibling: Thyone-e, which takes up 30% less space and represents a cost-effective alternative for applications in which the long-range mode is not required.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
Two Bluetooth protocols – one module
Telecoms, Datacoms, Wireless, IoT
Würth Elektronik has introduced its Skoll-I, a compact wireless module that combines both Bluetooth Classic and Bluetooth Low Energy version 5.4 into a single solution.

Read more...
Compact high-performance antennas
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX offers a variety of extremely compact and high-performance internal, on-board, multiprotocol 2,4 GHz antennas ideal for use in SiP applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved