Passive Components


Must you have that capacitor?

14 February 2001 Passive Components

When demand for the most common types of capacitors is stretching the world's supply, the use of sensible alternatives can avoid difficulties and may even save money. Murata explains further.

By far the most popular capacitors used are the smaller multilayer ceramic chips (MLCCs). There are many variations available and they are increasingly replacing film and tantalum dielectrics. The majority are used in decoupling and bypass applications, although there is a significant use in temperature compensating and other functions.

Recently, the main changes in MLCCs have been in C/V per unit volume so that the designer can now select a given C/V in a smaller package, for example, many of the values traditionally ordered in 1206 and 0805 sizes are now in 0603 or even 0402. Volume users are moving to these sizes so there will be more of them when delivery schedules get tight.

Difficulties can be minimised at the design stage by using the smaller sizes and more flexible definitions of MLCCs for general applications, with particular reference to the dielectric and voltage ratings (VR) chosen. For example, why specify only one VR? Most circuits today run at something under 10 V. It would be reasonable to specify a 10 or 16 V MLCC, but why not specify 10, 16, 25 and 50 V where they are available in the size required?

MLCCs are often specified at unnecessarily high VRs. Unlike many other dielectrics, the VR of an MLCC is the maximum voltage at which it can be run continuously within the operating temperature range. There is no need for a safety margin to avoid punching a hole in the dielectric at RV +5%, because the breakdown voltage of an MLCC is well above the operating voltage.

The same principle applies to a lesser degree to tolerance. High K dielectrics do have temperature, voltage and frequency characteristics and the selection of these materials indicates an application that will tolerate them. This being the case, relaxing or tightening the tolerance to allow use of an alternative may well be acceptable.

In decoupling and bypass applications, the capacitance value is rarely critical. This suggests that similar but different dielectrics could safely be used. For example in a benign environment, why specify only an X7R dielectric (-55 to 125°C)? Why not consider Y5V and Z5U. They have a higher dissipation factor and change more with temperature, but why in signal lines where temperature is not changing very much and the value is not critical?

In applications calling for stability or temperature compensation, the situation is different but there are still opportunities to be more flexible.

The comments above about voltage rating still apply. For absolute stability COG (±030 ppm/°C) has to be the answer but perhaps COH (±060 ppm/°C) would suffice on some occasions?

With tolerance, in stable circuits there is a tendency to select the tightest available. This may be necessary, but in view of all the other variables, is it always the case?

Table 1 shows some of the dielectric alternatives you might consider at the design stage or when a specified part is not readily available. Clearly, changing between X7R, X5R, B and R dielectrics will have a negligible effect unless operating at the extremes of temperature and there is little to choose between Y5V and Z5U.

Table 1. Some dielectric alternatives
Table 1. Some dielectric alternatives

These are just examples of what might be done at the design stage or when there is a problem. Should you require assistance, contact the local Murata distributor.

Some of the alternatives for three popular devices are shown in Table 2. These are not the limits of the size/value ranges, they are just options for these values.

Table 2. Alternatives for three popular devices
Table 2. Alternatives for three popular devices



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

First NVMe SSD Built with 8th-gen BiCS FLASH
EBV Electrolink Computer/Embedded Technology
KIOXIA recently announced the development and prototype demonstration of its new KIOXIA CM9 Series PCIe 5.0 NVMe SSDs, which incorporates CMOS directly Bonded to Array technology.

Read more...
Coupled inductor for high-performance applications
Passive Components
This coil with MnZn core is characterised by its high permeability and extremely low RDC values, which achieves excellent power density and very high efficiency.

Read more...
IMU with dual-sensing capability
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s 6-axis inertial measurement unit integrates a dual accelerometer up to 320g and embedded AI for activity tracking and high-impact sensing.

Read more...
Power inductors
iCorp Technologies Passive Components
he HTF-MP series is more suitable for complex multiphase power supply applications in design, effectively meeting the needs of ultra-thin and high-power devices.

Read more...
SMT power inductors
Future Electronics Passive Components
The Würth Elektronik WE-MXGI SMT power inductors are the latest addition to Würth Elektronik’s moulded power inductor series, engineered for high-frequency power applications.

Read more...
Large capacitance MLCCs at 100 V
RS South Africa Passive Components
TDK Corporation has expanded its CGA series for automotive multilayer ceramic capacitors to 10 µF at 100 V in 3225 size.

Read more...
Film and mica capacitors
Actum Electronics Passive Components
By utilising various polymer dielectrics plastics, Exxelia film and mica capacitors meet most technical requirements and serve all functions from standard filtering to specialised applications.

Read more...
Power-over-coax inductors
RS South Africa Passive Components
TDK has expanded the ADL3225VF series of wire-wound inductors for automotive power-over-coax (PoC).

Read more...
Thick film power resistors
Electrocomp Passive Components
Vishay has released a new product to the market, its thick film power resistor, which is offered in a clip-mount TO-247 package.

Read more...
Compact EMI suppression capacitors
RS South Africa Passive Components
These new components from TDK are 20% smaller than previous models and meet Grade III Test B standards for temperature, humidity, and bias.

Read more...