Telecoms, Datacoms, Wireless, IoT


RF remote control design simplified

5 September 2007 Telecoms, Datacoms, Wireless, IoT

Traditional infrared (IR) remote controls use IR LEDs to emit radiation focused by a plastic lens into a narrow beam.

Data is encoded by modulating the beam to provide immunity from other IR sources such as fluorescent lights. The receiver uses a silicon photodiode to convert the IR radiation to a current for decoding by the receiver's MCU. IR does not penetrate walls - although it can be reflected by walls and ceilings - and so generally does not interfere with other devices in adjoining rooms.

However, while IR's simplicity, low-cost and low-power consumption has ensured its widespread adoption, the technology is not without its weaknesses. The requirement for line-of-sight (or at least direct reflection), limited range and the complexity involved in accommodating bidirectional communications are the three major drawbacks.

RF (radio frequency) technology addresses all of these challenges: it does not require line-of-sight communication; can control appliances from room-to-room at ranges up to 10 metres, and easily supports two-way transmission.

The RF alternative

RF has been an option for remote control for some time but the technology's relative expense, design complexity and power consumption have made it uncompetitive with IR for most applications. Nordic Semiconductor claims that the development of a new generation of low power RF transceivers such as the nRF24L01, however, is helping to change that.

That said, the hardware is only part of the solution; a robust RF protocol is crucial to produce an RF link that works well in the presence of other RF systems utilising the ever more crowded 2,4 GHz band. Consequently, a good RF solution not only depends on competent hardware design, but also demands a good knowledge of wireless protocol design.

RF remote design made easy

To ease the design process, Nordic Semiconductor offers an RF remote control reference design, the nRD24H1. The device (transmitter) side of the nRD24H1 is implemented as a hardware module fitted on a six-button controller application board. The module includes a PCB antenna, 2,4 GHz transceiver (nRF24L01) and 8-bit MCU. The RF module supports up to 49 button inputs plus status LEDs. An alternative layout has fewer input buttons combined with serial interfaces for display support.

The reference design's host (receiver) is a production ready, full-speed USB dongle supporting the HID (human interface device) class with descriptors for all commands defined in Windows Vista. A USB compliance certificate is included in the kit, as well as a test ID for USB. This means that if changes to the supplied USB module are limited, USB compliance can be obtained simply by referring to this design.

The nRD24H1 also includes all firmware needed to make a remote control. The key part of this firmware is a complete two-way RF protocol stack for remote control applications. The protocol stack is implemented as a standalone software module providing an API (application programming interface) to the application layer. On top of this protocol stack, a simple application layer example, specific to the six button application board, is also included.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Industrial Ethernet time sensitive networking switch
RS South Africa Telecoms, Datacoms, Wireless, IoT
The ADIN3310 and ADIN6310 are 3-port and 6-port Gigabit Ethernet time sensitive networking (TSN) switches with integrated security primarily designed for industrial Ethernet applications.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
Automotive-grade digital isolators
Telecoms, Datacoms, Wireless, IoT
The NSI83xx series of capacitive-based isolators from NOVOSENSE Microelectronics offer superior EOS resilience and minimal power noise susceptibility.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Wi-Fi in 2025: When is Wi-Fi 7 the answer?
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Wi-Fi 7 introduces multi-link operation and lower latency, a game-changing feature that allows devices to transmit and receive data across multiple frequency bands simultaneously to significantly reduce network congestion.

Read more...
Bluetooth Lite SoCs purpose built for IoT
NuVision Electronics Telecoms, Datacoms, Wireless, IoT
Whether it is enabling predictive maintenance on industrial equipment, tracking assets in dense environments, or running for years on a coin cell battery in ultra-low power sensors, developers need solutions that are lean, reliable, and ready to scale with emerging use cases.

Read more...
LTE Cat 1bis module
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The A7673X LTE Cat 1bis module from SimCom is engineered to meet the growing demands of the IoT industry, offering exceptional performance and seamless integration.

Read more...
Track with precision
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX provides innovative antennas for cellular, LTE-M, NB-IoT, LoRa, GNSS, BLE, UWB, Wi-Fi, and future Satellite IoT.

Read more...
Wi-Fi 7 front-end module
RF Design Telecoms, Datacoms, Wireless, IoT
The Qorvo QPF4609 is an integrated front end module designed for 802.11be systems that has integrated matching, which minimises layout area.

Read more...
Multi-channel downconverter
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Downconverter from Crane Aerospace is a converter that operates from 2 to 18 GHz and delivers a noise figure of 11 dB with an attenuation range of 25 dB.

Read more...