Telecoms, Datacoms, Wireless, IoT


Telecom timing IC enables up to 10 G synchronous Ethernet

19 September 2007 Telecoms, Datacoms, Wireless, IoT

Maxim recently introduced the DS3104 IC to provide full carrier-class clock synchronisation for new synchronous Ethernet (SyncE) line cards and mixed SONET/SDH/SyncE line cards.

Key DS3104 innovations include two independent DPLLs for bidirectional frequency conversion between Ethernet clock rates and SONET/SDH rates, and complete support for all 1 G, 10 G, and 100 M Ethernet MII clock rates. Applications include line cards and other subsystems in a wide variety of wireline and wireless systems, including ADMs, digital cross-connects, carrier-class switches and routers, wireless base-stations, DSLAMs and multiservice access nodes.

The DS3104 has eight available clock inputs, and each can be assigned to either of the two internal DPLLs. Inputs are continually monitored for quality and can be automatically qualified and disqualified by the device according to configurable criteria. Four clock inputs are CMOS/TTL, the other four are LVDS/LVPECL or CMOS/TTL. The eight clock inputs accept all common telecom clock rates.

The DPLLs in the DS3104 can direct-lock to a number of common telecom frequencies. The DPLLs can also lock to integer multiples of the direct-lock frequencies by using programmable input dividers. DPLL bandwidths are programmable from 1 Hz to 600 Hz, and a variety of damping factors are available. The main DPLL can optionally use phase build-out techniques to perform hitless switching to the secondary system clock when the primary system clock fails. Typical output-clock phase movement in this scenario is less than one nanosecond, even when the device is clocked by an inexpensive crystal oscillator that is not temperature-compensated. The main DPLL also has a precise digital holdover mode to maintain output clocks in case both system clock references fail or are unavailable.

The DS3104 can produce a total of seven output-clock frequencies simultaneously, plus 2 kHz and 8 kHz frame pulses. Each output clock can be frequency-locked to either of the two DPLLs for maximum flexibility. For combination SONET/SDH/SyncE line cards, the device can simultaneously produce SONET/SDH rates (eg, 155,52 MHz), the 1 G Ethernet GMII clock rate (125 MHz), and the 10 G Ethernet XGMII clock rate (156,25 MHz or 312,5 MHz). All rates are frequency-locked to the selected system clock through the main DPLL. Of the seven output clocks, three are CMOS/TTL, two are LVDS/LVPECL, and two are dual CMOS/TTL and LVDS/LVPECL.

The device has an SPI serial bus interface and is packaged in an 81-lead, 10 mm x 10 mm BGA and operates over the full industrial temperature range of -40°C to +85°C.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
RF power amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The ZHL-20M2G7025X+ from Mini-Circuits is a 32 W power amplifier that operates from 20 to 2700 MHz and delivers a saturated output power of +45 dBm.

Read more...
Introducing the Quectel EG800Z series
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG800Z series is Quectel’s latest ultra-compact LTE Cat 1 bis module, designed to deliver reliable connectivity, low power consumption, and robust performance across a wide range of IoT applications.

Read more...
NeoMesh on LoRa
CST Electronics Telecoms, Datacoms, Wireless, IoT
Thomas Steen Halkier, CEO of NeoCortec, recently gave a keynote speech where he spoke about “NeoMesh on LoRa: Bringing true mesh networking to the LoRa PHY”.

Read more...
Modules upgraded with Direct-to-Cell tech
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that several of its LTE modules are now available with Direct-to-Cell (D2C) functionality, enabling devices to seamlessly connect to satellite networks.

Read more...
USB/Ethernet smart RF power sensor
RF Design Telecoms, Datacoms, Wireless, IoT
The PWR-18PWHS-RC from Mini-Circuits is an RF power sensor that operates from 50 MHz to 18 GHz and is designed to capture pulsed and trace modulated signals with very high data resolution.

Read more...
Tiny Bluetooth LE + 802.15 + NFC module
RF Design Telecoms, Datacoms, Wireless, IoT
Unleashing enhanced processing power, expanded memory, and innovative peripherals, the BL54L15µ from Ezurio is the ultimate choice for small and low power connectivity.

Read more...
AI modules for edge intelligence
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom has introduced two new entry-level AI computing modules, the SIM8668 and SIM8666, designed to bring intelligent capabilities to lightweight, energy-efficient edge devices.

Read more...
High performance ISM antennas
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the launch of two new high performance ISM antennas, designed to meet the need for wireless communication in devices that operate in the industrial and commercial applications.

Read more...
Quad-band high-precision positioning module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has recently announced the launch of the LG680P, a multi-constellation, quad-band GNSS module designed to deliver high-precision positioning across a wide range of applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved