Making stretchy, foldable electronic circuitry

14 May 2008 News

There are many applications in which it would be useful for circuits to be able to flex, bend or fold. These range from medical device applications to portable electronic devices.

Frost & Sullivan has therefore taken interest in work done by an international team of researchers that has developed a simple approach that should allow the production of stretchy, foldable integrated circuits that operate at high performance levels. The research has been reported in the journal Science.

"These systems combine high quality electronic materials, such as aligned arrays of silicon nano-ribbons, with ultrathin and elastomeric substrates, in multilayer neutral mechanical plane designs and with 'wavy' structural layouts," said John Rogers, one of the authors of the report.

The work, he said, points the way to devices that require extreme mechanical deformations during installation or use, yet at the same time need electronic properties consistent with those of conventional semiconductor electronics systems. "We are opening an engineering design space for electronics and optoelectronics that goes well beyond what planar configurations on semiconductor wafers can offer," Rogers said.

To build the devices, the researchers first apply a thin 'sacrificial layer' of poly(methyl methacrylate) to a rigid substrate, then coat it with a thin layer of polyimide. Devices are built on the polyimide layer using fairly conventional methods.

Then, the sacrificial poly(methyl methacrylate) layer is etched away, freeing the devices on the polyimide substrate from the rigid backing. The devices are then applied to a prestrained rubbery sheet. Once the sheet is allowed to relax, the device layer buckles into wavy structures that are still fully functional, but have enough 'give' to be bent, folded or otherwise manipulated.

"We have gone way beyond just isolated material elements and individual devices to complete, fully integrated circuits in a manner that is applicable to systems with nearly arbitrary levels of complexity," said Rogers.

Circuits in the structures have fully reversible stretchability and compressibility without substantial strains in the circuit materials themselves. Rogers said that adding a thin encapsulating layer on top of the devices could improve them still further by helping to prevent delamination under high strain.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274,

Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor’s desk: Making and sending things to space
29 May 2020, Technews Publishing , News
In this issue, one of the topics we are featuring is the aerospace and military/defence sector.

Personality profile: David Power
29 May 2020, Cadshop , News
“Aspire to work for a company that you admire, and for a boss that you want to serve, that shares your passion and motivation.”

Designing for military and defence applications
29 May 2020, Omnigo, Kreon Technology , News
No business can stand on its own without strong partnerships and stakeholder relationships. In this regard the military and defence industry is no exception.

Why ‘new space’ satellites demand a new approach to components
29 May 2020, Avnet South Africa , News
New space is opening up exciting opportunities for businesses, which can create completely new products, services and capabilities that were, until recently, impossible or impractical.

Clearing the Static: Safe storage and transportation of components
29 May 2020, Altico Static Control Solutions , News
During product transportation or storage, humidity can lead to excessive moisture inside of packaging, which can potentially damage electronic components by causing corrosion and mould-attack. Apart from ...

Elmatica’s SA seminars on PCB design a success
29 May 2020, Elmatica , News
During March, just weeks before COVID-19 resulted in South Africa going into lockdown, Elmatica held several seminars in the country, to get closer to and educate the local industry on printed circuit ...

Vepac launches new website
29 May 2020, Vepac Electronics , News
Vepac Electronics has recently launched its new and optimised website to enable its customers to navigate effortlessly, with a host of new products and related datasheets. Visitors to the site are also ...

Comtest trading for 15 years
29 May 2020, Comtest , News
Comtest, one of South Africa’s leading providers of test, measurement and communications equipment, is proud to mark its 15-year trading milestone in 2020. CEO Barend Niemand says, “Comtest has representation ...

Locked down but not knocked out
25 March 2020, ExecuKit , News
As a business, we are facing extremely hard times with the current worldwide pandemic and isolation. We are all maintaining social distancing and must learn how to do business with an enforced lockdown ...

From the editor’s desk: A new era – after mourning comes rebuilding
29 April 2020, Technews Publishing , News
When I sit down to write these columns once a month, even if the topic I decide to write about is not all sunshine and roses, I always try and look for a silver lining. I’m simply not able to do that ...