Telecoms, Datacoms, Wireless, IoT


UHF RFID explained

14 May 2008 Telecoms, Datacoms, Wireless, IoT

Anyone can buy an RFID system nowadays. In the past you would have had to be a specialist that either understood radio or computer issues, but nowadays you click on the order button, submit your payment details and the system arrives in the post.

That does not, however, mean that you are going to understand its operation or make it part of a successful application.

Anyone buying computer equipment in a computer store, will realise that the end user is being treated as a fool and that the specifications he is given about the equipment he is buying seldom go beyond the mains voltage needed to operate. All those specifications that are deemed necessary to inform him of the product, need to fit on the side of a small box and sometimes in nine languages. This is a far cry from buying computer equipment in the past when the pricelist along with the options, ran into 76 pages.

However, the equipment is not getting simpler, the users are just being told less.

UHF RFID is a technology that also has many options that affect its performance, and it is important that end users understand these choices so that they can get the right equipment for their application.

One of the most used choices, with all the hype about very low-cost transponders, is price. Not understanding the issues, users buy the cheapest transponders with the worst performance and end up with applications that will not work.

RFID performance is dominated by the choice of the operating frequency, and RFID operating in the UHF frequency band offers the best of most worlds with long range performance and potentially the lowest manufacturing costs.

There are two major classes of UHF RFID, namely those where the tag-talks-first (TTF) and the other where the reader-talks-first (RTF).

If you have an application for measuring slow-moving items passing a control, where you want very short operating range and you are labelling items that need to be sold in a retail store, then you want RTF such as EPC Gen2 type tags. These tags are relatively cheap, but the protocol causes the reader to generate a lot of radio interference for other users in the vicinity and so very few readers can operate in close proximity.

Usually these readers will be switched off most of the time and will only be activated when a pallet is passing so that other readers can use the spectrum. You cannot use these types of transponders for high speed situations, or for sports timing situations, or for theft control, as the time when the reader will successfully communicate with a transponder is uncertain as a result of the RTF protocol.

The other protocol (TTF) allows critical situations to be continually monitored, allowing fast moving tags to be measured, and can provide repeatable, accurate measurements even in situations where multiple readers are in use at the same time.

The reader emits a continuous energy field which provides power to the tags and a frequency reference for them to use for communication. As the energy field is constant, little interference is caused and many readers can operate simultaneously and continuously in close proximity. The tag responds when entering this energy field and receiving enough energy to operate.

This response can come within thousandths of a second of it receiving enough power, which means that it is suitable for sports timing in many situations, can handle transponders attached to speeding items (up to 300 kph), and can be used to monitor access points for anti-theft, asset and monitoring purposes as the energising field is continuously active and goods will not be able to pass through undetected. TTF tags also usually have longer operating ranges, providing a larger coverage field in front of readers.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

RF amplifier for linear and saturated applications
28 October 2020, RFiber Solutions , Telecoms, Datacoms, Wireless, IoT
The MAPC-A1103 is a high-power GaN-on-silicon-carbide HEMT D-mode amplifier suitable for DC to 2,7 GHz frequency operation. The device supports both CW and pulsed operation with peak output power levels ...

Read more...
Antennas from Linx available from RS
25 November 2020, RS Components (SA) , Telecoms, Datacoms, Wireless, IoT
RS Components is now stocking a comprehensive range of antennas from wireless technology specialist, Linx Technologies. Linx, headquartered in Oregon, USA, produces antennas that enable design engineers ...

Read more...
Major update to GNSS firewall software strengthens protection
25 November 2020, Comtest , Telecoms, Datacoms, Wireless, IoT
Critical infrastructure systems including power utilities, financial services, mobile networks and transportation rely on Global Positioning System (GPS)-delivered timing to ensure ongoing operations. ...

Read more...
The difference between RF limiters and attenuators
25 November 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
Both RF limiters and attenuators reduce the power of an RF signal. However, they do so in different ways that are key to understanding their use. These components are often used to protect sensitive RF ...

Read more...
RTLS tag module for real-time positioning
25 November 2020, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
Inpixon announced the launch of its newest smart tag module, the swarm bee LE V3, supporting a range of indoor and outdoor location applications including real-time location systems (RTLS). This is ...

Read more...
Antenna selection and design for small IoT devices
25 November 2020, Avnet Abacus , Telecoms, Datacoms, Wireless, IoT
IoT devices are typically small and often have a severely limited power budget to operate for long periods from a small energy source such as a primary coin cell. While careful selection of ICs and modules, ...

Read more...
Connectivity for IoT devices with SoftSIM platform
25 November 2020, Otto Wireless Solutions , Telecoms, Datacoms, Wireless, IoT
IoT device vendors are facing more and more complex cellular connectivity issues these days. Manufacturing is often outsourced to third-party factories and finished devices are being distributed to many ...

Read more...
Otto Wireless Solutions’ evolution into a wireless connectivity powerhouse
25 November 2020, Otto Wireless Solutions , Telecoms, Datacoms, Wireless, IoT
Otto Wireless Solutions, established in 2010, has gradually evolved into a South African powerhouse of industrial wireless connectivity, offering solutions which cover multiple industries with its suite ...

Read more...
Nordic supports development of Amazon Sidewalk devices
25 November 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
Nordic Semiconductor is cooperating with Amazon to develop Bluetooth Low Energy (Bluetooth LE) solutions for Amazon Sidewalk. Amazon Sidewalk is a neighbourhood network designed to help customer devices ...

Read more...
4G USB device gateway makes IoT retrofitting easy
25 November 2020, Gemalto IoT (Cinterion Wireless Modules) , Telecoms, Datacoms, Wireless, IoT
As 2G and 3G networks phase out around the world, the Cinterion DGL61-W USB Device Gateway offers a simple and powerful solution for retrofitting existing IoT applications while providing seamless evolution ...

Read more...