Power Electronics / Power Management


The future of energy harvesting technologies

28 May 2008 Power Electronics / Power Management

The need to minimise maintenance and replacement costs of battery-powered applications is driving developments in energy harvesting technologies that bind renewable and ambient sources of energy.

New analysis from growth consulting company Frost & Sullivan, finds that energy harvesting technologies such as piezoelectric, thermoelectric and others will have potential applications in wireless sensor networks and low-power devices.

"Although micro-level energy harvesting technologies are very new compared to batteries, they can initially be used to recharge batteries and gradually replace them as self-sufficient devices," notes research analyst Arvind Sankaran. "By replacing batteries, these devices eliminate toxic waste from disposed batteries and provide the perfect solution to many countries that are implementing stringent rules to monitor power consumption and environmental waste."

As energy harvesting technologies harness ambient and renewable sources of energy, growing awareness among consumers to use environmental friendly technology further strengthens demand.

"Low output power and below-par efficiency of energy harvesting systems currently limit the application scope of energy harvesting technology," says research analyst Kasthuri Jagadeesan. "It faces difficulty in penetrating the market as it is still in the early prototyping or early commercialisation stage, as opposed to battery technology, which is well established."

Along with developments in materials and control electronics, researchers and manufacturers concentrate their efforts on the exploration of various kinds of energy sources and improve the performance characteristics.

Starting with low-power sensor applications, they can be gradually used to power portable devices and be utilised in buildings for lighting and temperature control. Additionally, improvements in energy harvesting technologies would allow these devices to provide reliable and constant power for industrial, automotive, aerospace, defence and medical applications. "Apart from the development of sophisticated control electronics and materials research, optimising manufacturing techniques and costs can also aid in making the technology cost-effective to the end user," cites Sankaran.

Many academic institutions and companies actively work to push the technology through by tackling various challenges. Some technologies are in the product development stage, while others are on the verge of commercialisation.

Harvesting of solar energy is an example of a well-developed technology that has influenced the development of photovoltaic cells for low-power electronic devices. Other energy harvesting technologies such as electrodynamic, electrostatic and electro active polymers are under investigation.

Although the future looks promising for these emerging eco-friendly energy harvesting technologies, their acceptance in the market depends on many factors. These include their performance metrics, consumer awareness of harnessing ambient energy, funding for R&D and collaboration between manufacturers and technology developers.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The importance of power integrity
Spectrum Concepts Power Electronics / Power Management
[Sponsored] Behind every high-speed system lies the need for power integrity. Without it, even the cleanest signal paths become compromised.

Read more...
Precise multi-vital sign monitoring
Future Electronics Power Electronics / Power Management
The AS7058 by ams OSRAM is an integrated multi-vital sign monitoring device, which provides a complete photoplethysmogram, electrocardiogram, body impedance sensor, and electrodermal activity sensor.

Read more...
Automotive battery diagnostics tester
Comtest Power Electronics / Power Management
Midtronics’ MVT handheld battery tester is a revolutionary tool, powered by MDX-AI, which is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Advanced 3-phase controllers
Future Electronics Power Electronics / Power Management
The STSPIN32G0 by STMicroelectronics is a family of highly integrated system-in-package providing solution suitable for driving three-phase brushless motors.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
Reliable power for demanding applications
Conical Technologies Power Electronics / Power Management
The Mibbo Power MTR480 three-phase DIN-rail power supply is engineered to meet stringent industrial automation requirements, offering dependable performance in environments where downtime is not an option.

Read more...
Powering performance and precision
Future Electronics Power Electronics / Power Management
onsemi’s innovative T10 series MOSFETs, available in 40 V and 80 V versions, are designed for high-efficiency, fast-switching, and power-dense applications.

Read more...
Programmable flyback switcher ICs
Future Electronics Power Electronics / Power Management
Power Integrations has announced the release of the InnoSwitch5-Pro family of programmable flyback switcher ICs, which offer more than 95% efficiency in streamlined AC-DC converter designs.

Read more...
Multilayer chip beads with 8 A rating
RS South Africa Power Electronics / Power Management
TDK Corporation has expanded its MPZ1608-PH series of large-current multilayer chip beads for automotive and commercial power supply lines.

Read more...
The role of bidirectional charging in the evolving energy landscape
Avnet Silica Power Electronics / Power Management
As reliance on renewable sources like wind and solar continues to grow, the need for efficient energy flow and storage solutions has become more critical than ever.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved