Telecoms, Datacoms, Wireless, IoT


Wireless mesh networking: ZigBee vs DigiMesh

6 August 2008 Telecoms, Datacoms, Wireless, IoT

Mesh networking is a powerful way to route data. Range is extended by allowing data to hop node to node and reliability is increased by ‘self healing’, the ability to create alternate paths when one node fails or a connection is lost.

One popular mesh networking protocol is ZigBee, which is specifically designed for low-data rate, low-power applications. Digi International offers several products based on ZigBee. Additionally, the company has developed an alternate mesh protocol named DigiMesh. Both ZigBee and DigiMesh offer unique advantages important to different applications, as this article considers.

ZigBee nodes

The ZigBee protocol defines three types of nodes: coordinators, routers and end device, with a requirement of one coordinator per network - see Figure 1.

Figure 1. A typical ZigBee network
Figure 1. A typical ZigBee network

While all nodes can send and receive data, there are differences in the specific roles they play.

Coordinators are the most capable of the three node types. There is exactly one coordinator in each network and it is the device that establishes the network originally. It is able to store information about the network, including security keys.

Routers act as intermediate nodes, relaying data from other devices.

End devices can be low-power/battery-powered devices. They have sufficient functionality to talk to their parents (either the coordinator or a router) and cannot relay data from other devices. This reduced functionality allows for the potential to reduce their cost.

ZigBee offers these advantages:

* Open standard with interoperability between vendors.

* Option for lower cost, reduced function end nodes.

DigiMesh nodes

DigiMesh has only one node type. As an homogenous network, all nodes can route data and are interchangeable - see Figure 2. There are no parent-child relationships. All can be configured as low-power/battery powered devices.

Figure 2. A typical DigiMesh network
Figure 2. A typical DigiMesh network

DigiMesh offers these advantages:

* Network setup is simpler.

* More flexibility to expand the network.

* Increased reliability in environments where routers may come and go due to interference or damage.

Sleeping routers

Allowing a node to sleep reduces power consumption, which is especially helpful for nodes that are battery powered. Currently, ZigBee allows for end devices to sleep but not routers or coordinators. DigiMesh allows all nodes to sleep, thereby increasing battery life.

Sleeping is allowed by time synchronisation. Some systems require a gateway or coordinator to establish time synchronisation. A significant advantage of DigiMesh is that it eliminates the single point of failure associated with relying on a coordinator or gateway. Instead, it establishes time synchronisation through a nomination and election process, enabling the network to operate autonomously.

Additional differences

Since ZigBee is an open standard, it offers the potential for interoperability with devices made by different vendors. This provides the ability to have over-the-air firmware updates. Furthermore, ZigBee offers established profiles for common applications such as energy management and lighting controls. A good selection of diagnostic support tools, like RF packet sniffers, is also available.

Table 1. Comparison between ZigBee and DigiMesh
Table 1. Comparison between ZigBee and DigiMesh

DigiMesh, as a proprietary protocol, allows for tighter control of code space and therefore more room for growth in features. It is available on platforms with longer range and more RF data rate options. Frame payload is generally larger, which can improve throughput for applications that send larger data blocks. Additionally, DigiMesh uses a simplified addressing method, which improves network setup and troubleshooting.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Full sensor to cloud solution
CST Electronics Telecoms, Datacoms, Wireless, IoT
NeoCortec has demonstrated the seamless and rapid development of full sensor-to-cloud solutions using NeoMesh Click boards from MikroE and the IoTConnect cloud solution from Avnet.

Read more...
Long-range Wi-Fi HaLow module
TRX Electronics Telecoms, Datacoms, Wireless, IoT
One of Mouser’s newest products is the Morse Micro MM6108-MF08651-US Wi-Fi HaLow Module, which adheres to the IEEE 802.11ah standard.

Read more...
Quectel launches 3GPP NTN comms module
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the Quectel BG95-S5 3GPP non-terrestrial network (NTN) satellite communication module.

Read more...
SIMCom’s A7673x series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat.1 bis module based on the ASR1606 chipset, that supports wireless communication modes of LTE-FDD, with a maximum downlink rate of 10 Mbps and a maximum uplink rate of 5 Mbps.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Long-range connectivity module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Digi XBee XR 868 RF Modules support the deployment of long-range connectivity applications, and support point-to-point and mesh networking protocols.

Read more...
4G LTE-M/NB-IoT connectivity reference design
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Developed around the industry-leading Nordic nRF9160 module, the platform comes complete with a newly-developed LTE antenna, ATRIA, which is pre-certified to operate over the full LTE-M and NB-IoT bands.

Read more...
Antennas to meet all connectivity requirements
Electrocomp Telecoms, Datacoms, Wireless, IoT
Kyocera AVX RF antennas meet today’s connectivity demands in the LTE, Wi-Fi, Bluetooth, GNSS, and ISM wireless bands, available in surface mount, patch or external configurations.

Read more...
Introducing SIMCom’s new A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
18 W monolithic microwave amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The CHA8612-QDB is a two stage, high-power amplifier operating between 7,9 and 11 GHz. The monolithic microwave amplifier can typically provide 18 W of saturated output power and 40% of power-added efficiency.

Read more...