mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

Design consequences of geometry 'shrinks'
2 November 2005, Circuit & System Protection

As we all know, the process geometries of both digital and analog integrated circuits are continually shrinking - with the clear advantages of lower power requirements, silicon areas and prices.

However, this reduction in geometry size does have implications for board designs. A simple substitution of a device manufactured with a 0,25 μm (micron) process in place of one manufactured in a 0,7 μm process can produce unexpected results.

Why is this? In theory, nothing has changed, but the evidence contradicts this. One option is to avoid using smaller-geometry devices, but this is very short-sighted. Such a decision means that systems will not benefit from lower power-supply voltages, faster speeds and lower cost - making them uncompetitive in a very short time.

The best approach is to design in the expectation that geometries will continue to shrink. An important issue to consider is increased susceptibility to electrostatic discharge (ESD). Smaller-geometry devices are less able to absorb high-voltage transients and lack robustness around high currents. The manufacturers' standards are not reduced, with a 2000 V r.m.s. to 4000 V r.m.s. ESD tolerance (Human Body Model). However, their tests look for catastrophic failures while the end-user can experience RAM contamination caused by electromagnetic interference (EMI) or electrical fast transient (EFT) signals.

A number of approaches can help with this problem, including protection circuits (MOVs, transient suppressors), microcontroller or processor pin protection (I/O, interrupt, reset pins), or firmware recovery techniques (WDT, register refresh), etc. All of these techniques help to produce a more-robust design, but the most significant results are achieved by layout optimisation.

To move to smaller-geometry devices, it is important to look at places on the board layout where spikes and glitches can enter the newly-sensitive circuits. One of the most productive places to look, is at the power-supply tracks. In a typical circuit, buck- or boost-converters provide the power supplies. This type of supply is inherently noisy, but there is also the risk of added EFT signals, in the form of voltage or current spikes. These may be quite acceptable in circuits using larger-geometry devices, but can cause problems as smaller geometries are used. A general rule-of-thumb is to minimise these effects by managing the power and ground traces (or planes). Finally, the circuit has always required decoupling or bypass capacitors, but now, accurate selection is critical. Figure 1 illustrates a range of techniques that offer different levels of effectiveness.

Figure 1. Connecting several devices with one ground and V<sub>DD</sub> trace; (a) can became a candidate for ground and power-supply loops. This topology also enhances power-supply glitches. Having ground, or V<sub>DD</sub> jumper (b) is a better solution, but not great. Creating a ground and V<sub>DD</sub> trace from device to device is a better solution (c) between these three. However, the best solution is to have separate ground and power-supply planes (d) in a multilayer board
Figure 1. Connecting several devices with one ground and VDD trace; (a) can became a candidate for ground and power-supply loops. This topology also enhances power-supply glitches. Having ground, or VDD jumper (b) is a better solution, but not great. Creating a ground and VDD trace from device to device is a better solution (c) between these three. However, the best solution is to have separate ground and power-supply planes (d) in a multilayer board

Summary

Of course, these are not new suggestions, but many engineers have discovered that not all of them have to be implemented too carefully for circuits using larger-geometry devices. Now, the situation is changing. As new silicon geometries work their way into designs, board layouts must be optimised with power glitches in mind: add protection circuits such as MOVs and transient suppressors; protect the I/O, interrupt and reset pins of the controller or processor; use firmware recovery techniques such as WDT or 'register refresh' so that they contain the correct values. All of these techniques will help to produce a robust design.


Credit(s)
Supplied By: Tempe Technologies
Tel: +27 11 455 5587
Fax:
Email: willem.hijbeek@tempetech.co.za
www:
Supplied By: Altron Arrow
Tel: +27 11 923 9600
Fax: +27 11 923 9884
Email: info@arrow.altech.co.za
www: www.altronarrow.com
Supplied By: Avnet South Africa
Tel: +27 11 319 8600
Fax: +27 11 319 8650
Email: sales@avnet.co.za
www: www.avnet.co.za
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • Coaxial RF surge protectors
    23 October 2019, RF Design, Circuit & System Protection
    Pasternack has launched a new series of coaxial surge protectors designed to protect valuable communications equipment from power surges and indirect lightning strikes. Pasternack’s new surge protectors ...
  • Automotive H-bridge driver
    23 October 2019, Altron Arrow, Power Electronics / Power Management
    The TLE985x H-bridge MOSFET driver IC product family from Infineon Technologies is an ideal fit for compact and cost-effective motor control solutions. It targets automotive applications such as sunroof, ...
  • Radiation-tolerant PolarFire FPGA
    23 October 2019, Avnet South Africa, Programmable Logic
    Developers of spacecraft electronics use radiation-tolerant (RT) field programmable gate arrays (FPGAs) to create on-board systems that meet the demanding performance needs of future space missions, survive ...
  • Neuromorphic memory solution for AI
    23 October 2019, Altron Arrow, DSP, Micros & Memory
    As artificial intelligence (AI) processing moves from the cloud to the edge of the network, battery powered and deeply embedded devices are challenged to perform AI functions – like computer vision and ...
  • Buck converter with lowest quiescent current
    23 October 2019, Avnet South Africa, Power Electronics / Power Management
    Texas Instruments introduced an ultra-low-power switching regulator with what it claimed as the industry’s lowest operating quiescent current (IQ) at 60 nA. The TPS62840 synchronous step-down converter ...
  • Battery design trends for IoT
    23 October 2019, Avnet South Africa, Power Electronics / Power Management
    Ultimately, the choice of battery for any application in the Internet of Things will depend on the power profile of the application, in combination with any environmental factors such as temperature.
  • Surge arrestor for satellite antenna systems
    23 October 2019, Conical Technologies, Circuit & System Protection
    Nextek announced the release of its new lightning surge arrestor for use with satellite antenna systems. The new PTC-C030 was designed with two F-type connectors for easy connection to V-SAT or DSTV satellite ...
  • Electronic speed controller demo board
    23 October 2019, Altron Arrow, Design Automation
    The B-G431B-ESC1 Discovery kit is based on STMicroelectronics’ STM32G431CB microcontroller, the L6387 driver and STL180N6F7 power MOSFETs. It is composed of a main power board, and a daughterboard with ...
  • Four approaches to implement a wearable sensor hub
    23 October 2019, Avnet South Africa, DSP, Micros & Memory
    As more sensors are added to nearly every electronic device including smartphones, tablets and wearables, more power is needed to run sensor data and turn it into useful information. Data retrieved from ...
  • 5 Watt AC-DC converter
    23 October 2019, Avnet South Africa, Power Electronics / Power Management
    Aimtec’s new AMEL5-277NZ is an AC-DC converter which has been designed to offer greater economies of scale due to greater production automation, leading to improved reliability and performance. The product ...
  • USB Type-C power controllers
    23 October 2019, Avnet South Africa, Power Electronics / Power Management
    Microchip announced two new solutions that simplify USB Type-C PD (Powered Device) designs to remove the traditional complexity and high costs associated with implementing USB Type-C in a range of applications.  ...
  • High-precision automotive GNSS module
    23 October 2019, Avnet South Africa, Telecoms, Datacoms, Wireless, IoT
    Quectel Wireless Solutions announced the release of its LG69T module, an automotive-grade, dual-band, high-precision GNSS (global navigation satellite system) module that integrates dead reckoning (DR) ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.