Power Electronics / Power Management


How to design small, efficient power supplies

18 March 2009 Power Electronics / Power Management

In an odd way, power supplies are like insurance policies – you know you need one but it is not something you really want to think about.

How your next electronic system functions is much more interesting; the power supply is a necessary evil to make it work.

In another way, the analogy falls down: insurance policies invariably increase in price, while power supplies have become smaller, more efficient and cheaper over the last couple of decades. This trend towards smaller power supplies, that leave more room in the system for added functionality and processing power, is set to continue. Furthermore, these power supplies must fit the standard formats that are already in use to avoid system re-design costs.

In the case of AC-DC power units, it is not dramatic technology breakthroughs that drive the trend, but rather good engineering and the inventiveness to combine the best of a whole range of techniques and technologies, that separate a really innovative power supply from an average one. This article looks at AC-DC power supply design in the popular 100 W to 200 W range. It considers a combination of design approaches that can be brought together to minimise the size and cost of the power unit, whilst maximising efficiency and application flexibility.

Let us start by defining some typical design goals. The power supply should be as small as possible to save space or leave room for added system functions. It should make minimal contribution to wasted heat in the system. In practice, it is microprocessors that now create most system heating, but it is still important that power supplies are designed for high efficiency; smaller heatsinks can then be used to save space.

For a 100 W to 200 W power supply, efficiency goals of 90% are not unrealistic. A 1% efficiency improvement represents 10% less heat dissipation at the upper end of the range, and this can make a significant difference to the degree of cooling needed for the power supply. Cost, of course, is an ever-present consideration, both in terms of bill of materials and manufacturing complexity.

Keeping the design as simple as possible is an important consideration in this respect. Finally, functionality should not be compromised. Control and alarm signals, current sharing with similar units, and the ability of the power supply to maintain its performance over a wide range of AC input conditions are all important.

Looking at the main stages within an AC-DC power supply shown in Figure 1, here are some proven ways in which size and cost can be minimised without compromising performance or functionality.

Figure 1. AC-DC power supply block diagram
Figure 1. AC-DC power supply block diagram

1. Input filter. A two-stage filter design using high permeability cores will minimise size while providing high common-mode and differential noise reduction. Stacking some components vertically can save board space and improve cooling.

. Power factor correction circuit (PFC). The use of silicon carbide diodes has become economically feasible in recent years as component prices have fallen. Their reverse current characteristics mean that they do not require a snubber circuit, saving on five or six components. Furthermore, they contribute to a 1% typical efficiency boost. Using a stepped gap inductor provides high inductance at high input line and supports maximum flux density at low line. Using continuous conduction mode (CCM) operation throughout the input range keeps the peak switching current and input filter requirements to a minimum.

3. Main converter. Here, a resonant topology can virtually eliminate switching losses. This not only improves power supply efficiency but also enables the use of smaller heatsinks. In fact, compact ceramic heatsinks can sometimes be used for power transistors, rather than metal ones. Their advantages include a reduction in noise and consequently simplified filtering. This is because the heatsinks do not have capacitive coupling with the drain connections of the switching MOSFETS. In addition, smaller creepage distances, compared with those needed for metal heatsinks, can be used. This provides further savings in board space.

4. Output rectifier. Opt for synchronous rectification here, using switched MOSFETS rather than output rectifier diodes. This improves efficiency through a significant reduction in power dissipation. For example, at 20 Amps a diode with 0,5 V forward voltage gives a power dissipation of 10 W. Using a MOSFET with an ON resistance of, say, 14 mΩ at +100°C dissipates just 5,6 W – a 44% improvement. Once again, ceramic substrates can replace conventional heatsinks.

5. Control circuit. Semiconductor manufacturers have been developing increasingly integrated control circuits for power supplies in recent times. This means savings in component count, manufacturing costs and board space, even where the integrated circuits themselves may be more expensive than a discrete component approach. One example is the IR1150 – a PFC chip that operates as a one-cycle control (OCC) device, which allows major reductions in component count without reducing power system performance. Similar, application-specific chips can provide main converter voltage control plus over-current protection, over-voltage protection and over-temperature protection. They can also control the output rectifier switching.

Other desirable control options for increased application flexibility include power sharing with synchronous monotonic start-up, an inhibit circuit to shut down the power supply via logic control, a ‘power good’ signal, and the control functionality needed for a standby converter. The standby converter provides an independent 5 V output whenever AC power is present.

The possibilities for improvements in AC-DC power supply design will continue to be driven largely by improvements in semiconductor performance and functionality. Better magnetic and passive components also have a role to play, but here progress is more evolutionary than revolutionary. The best power supplies are developed from a deep understanding of the latest proven component technologies, plus a determination to explore how these technologies can be combined in new and innovative ways to achieve ever more challenging design objectives.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The role of bidirectional charging in the evolving energy landscape
Avnet Silica Power Electronics / Power Management
As reliance on renewable sources like wind and solar continues to grow, the need for efficient energy flow and storage solutions has become more critical than ever.

Read more...
SIGLENT launches new 8 GHz DSO
Vepac Electronics Test & Measurement
SIGLENT has unveiled the enhanced SDS7000A/AP models, building on the success of its SDS7000A high-resolution digital oscilloscope series.

Read more...
How to calculate a buck converter’s inductance
Power Electronics / Power Management
In the buck circuit, the inductor design is a key element that is closely related to system efficiency, the output voltage ripple, and loop stability.

Read more...
High-current EMI filters
Accutronics Power Electronics / Power Management
TDK has introduced 20 and 40 A, 80 V DC board-mount EMI filters, reducing differential mode conducted emissions for switching power supplies with high input current requirements.

Read more...
Isolated SMD DC-DC converters
iCorp Technologies Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...
Next-gen power meter
Electrocomp Express Power Electronics / Power Management
The VT-PWR-LV is a next-gen Vista Touch power meter from Trumeter for single, split, and three-phase systems.

Read more...
Smallest 13th gen Intel SBC
Vepac Electronics Computer/Embedded Technology
At just 86 x 55 mm, the de next-RAP8 continues AAEON’s run of producing record-breaking single-board computers with embedded Intel technology.

Read more...
Advanced PMIC for high-performance AI applications
ASIC Design Services Power Electronics / Power Management
Microchip Technology has announced the MCP16701, a Power Management Integrated Circuit (PMIC) designed to meet the needs of high-performance MPU and FPGA designers.

Read more...
New SiC power MOSFET
Future Electronics Power Electronics / Power Management
STMicroelectronics’ SCT012H90G3AG is a robust, automotive-grade SiC MOSFET, engineered for demanding power electronics, featuring a 900?V drain-source voltage and exceptionally low on-resistance of 12?mO at 60?A.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved