Power Electronics / Power Management


Schottky diodes eliminate switching losses

18 March 2009 Power Electronics / Power Management

Ordinary silicon diodes used in switched-mode power supplies lose up to 1% efficiency by not turning off immediately, but now STMicroelectronics is among the first companies to introduce silicon carbide (SiC) diodes that save this energy normally lost during switching.

The STPSC806D and STPSC1006D SiC Schottky diodes are especially useful in converters for solar power systems, where every fractional efficiency percentage is valuable. Power supplies for servers and telecom systems, which are operational round the clock, will also benefit from the cumulative savings of this apparently small improvement in efficiency. These diodes can also be used in motor controllers, which are deployed in large numbers worldwide, thereby saving the environmental impact of many thousands of Watts of generated energy.

Moreover, by saving the energy normally dissipated as heat by the silicon diode, the new SiC technology enables engineers to consider a lower maximum current rating for the diode. This allows smaller components to be used without sacrificing usable power. In high-power applications where heatsinks are normally used, these can also be made smaller leading to more compact power supplies delivering higher power density.

A further benefit for switched-mode power supply designers is that SiC diodes allow higher switching frequencies, which enable other components such as filtering capacitors and inductors to become smaller and less expensive, and consume less power.

SiC technology is able to deliver these benefits because no reverse recovery charge accumulates during the diode’s normal conduction period. When a conventional bipolar silicon diode is turned off, this charge must be dispelled by recombination between groups of charge carriers close to the diode junction. The current flowing during this recombination period is called the reverse recovery current. This undesired current, when combined with the voltage across associated semiconductor power switches, generates heat that will be dissipated by the switches. By eliminating this reverse recovery charge, SiC Schottky diodes have much lower switching losses across the board, leading to higher efficiency and lower heat dissipation.

The 8 A rated STPSC806D and 10 A STPSC1006D, for 600 V applications, are available in the TO-220AC package.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
3-terminal filters for automotive applications
RS South Africa Power Electronics / Power Management
TDK has expanded its YFF series of 3-terminal filters for automotive applications to include higher voltages up to 35 V and higher capacitances up to 4,7 µF.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Why your PoE budget could make or break your next installation
Power Electronics / Power Management
In South Africa’s often unpredictable networking environments, understanding and planning your PoE budget is essential for system reliability, customer satisfaction, and long-term scalability.

Read more...
Five-minute EV charging a reality
Power Electronics / Power Management
Successfully demonstrated in Beijing recently at the Shanghai auto show, BYD claimed to add 400 km of range in just five minutes of charging.

Read more...
The evolution of power management in electronics
TRX Electronics Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Power and precision in a compact package
Conical Technologies Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Robust PoE module
CST Electronics Power Electronics / Power Management
The Ag59800-LPB high power, IEEE 802.3bt compliant, PD module from Silvertel offers typical efficiency of 95% making it an ideal choice for higher power, space-constrained applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved