DSP, Micros & Memory


Digital countdown timer may never need battery replacement

5 October 2005 DSP, Micros & Memory

Comprising a microprocessor, an LCD, a 32,768 kHz crystal, and little else, the basic countdown-timer circuit shown in the figure operates from a commonly-available CR2032 lithium coin-cell battery. Based on the circuit's calculated current drain, the battery may never need replacement over a projected 10-year operational life.

A half-dozen components are all it takes to build a battery-thrifty countdown timer
A half-dozen components are all it takes to build a battery-thrifty countdown timer

Careful selection of the battery and diligent exploitation of the microprocessor's low-power modes help minimise power consumption and so maximise battery life. The coin-cell battery's size and flat form-factor encourage miniaturisation for portable-system applications. In addition, the lithium cell presents a flat voltage vs time discharge curve that allows direct drive of the LCD's segments to produce high contrast without additional compensation circuitry. A typical CR2032 cell delivers approximately 200 mAhr of rated energy capacity. To achieve the design goal of 10 years of continuous operation, the system's average current consumption must not exceed 2,28 μA, which is calculated by dividing the battery's energy capacity by the system's operational life: 200 mAhr/10 years/365 days/24 hours = 2,28 μA.

A microprocessor from Texas Instruments' MSP430 family presents a low-standby-current demand of only 0,8 μA, which includes current drawn by its crystal oscillator, integrated LCD driver, and interrupt-driven wake-up timer. The 3½-digit LCD, a Varitronix model VI-302-DP, consumes an additional 1 μA. The total standby-current consumption for all active countdown timer components is thus 1,80 μA.

In normal (standby) operation, the microprocessor's 32 kHz external-crystal clock drives an internal counter that generates an interrupt once per second. The interrupt awakens the processor, which executes an active main-software loop that decrements a countdown register via direct BCD (binary-coded-decimal) subtraction. Adding a value of 99 (decimal) to the countdown register and discarding the leftmost digit performs a one-digit subtraction. For example, 21+99 = 120; dropping the '1' in the '100's place, yields a value of 20. As a bonus, this method directly displays the countdown register's contents on the LCD without requiring current-hungry binary-to-BCD conversions. As a final step, the main loop compares the countdown register's contents with zero to determine whether the pre-programmed time interval has expired. If so, the display flashes the time-out message. The main loop activates the CPU and its on-chip high-speed oscillator, which consume a total of 250 μA. Writing the software to execute 100 or fewer clock cycles - equivalent to 100 μs at the default 1 MHz CPU clock frequency - reduces current demand. With such a short active period, the main loop's total current consumption is virtually negligible: main loop = 250 mA x (100/1 million) = 0,025 μA.

Thus, the total current consumption for the digital countdown timer is the sum of the standby and main loop currents: 1,8 + 0,025 ~ 1,8 μA. At approximately 1,8 μA average current consumption, the countdown timer easily meets the 2,28 μA design goal and ensures more than 10 years of continuous operation. Given the device's low current drain, a designer could reduce the timer's cost and complexity by packaging the circuitry along with a non-replaceable battery. Many of the microprocessor's functions and I/O pins remain unused and available for additional features, and the compact firmware for implementing the counter occupies less than 250 bytes of 8 Kbyte of available flash memory.

Applications for the circuit range from exercise-routine timing to a restaurant-service-guarantee timer. In such an application, the restaurant's greeter presses the timer's reset switch to reset the processor and start a pre-programmed countdown interval. If the time interval expires without the customer being seated, the timer's display flashes to indicate that a guarantee of service went unmet.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The 8-bit survival syndrome – Part 2
DSP, Micros & Memory
Just like the 4-bit pre-microcontroller, the 8-bit MCU has been finding ways to stick around. Their features and speeds have been improving, offering competitive reasons to work with them.

Read more...
Enhanced code protection for USB µC portfolio
Future Electronics DSP, Micros & Memory
To help easily incorporate USB power and communication functionality into embedded systems, Microchip Technology has launched the AVR DU family of microcontrollers.

Read more...
General-purpose MCU with RISC-V architecture
EBV Electrolink DSP, Micros & Memory
Renesas has released a general-purpose MCU to enhance its existing RISC-V portfolio, and this is its first MCU using a RISC-V core developed internally at the company.

Read more...
8-bit MCU with I3C support
Avnet Silica DSP, Micros & Memory
The PIC18-Q20 8-bit microcontrollers from Microchip easily interface with devices operating in multiple voltage domains, and the built-in I3C interface supports higher-speed and lower-power data transfers than I2C.

Read more...
An evolutionary step in customisable logic
Altron Arrow DSP, Micros & Memory
Microchip Technology is offering a tailored hardware solution with the launch of its PIC16F13145 family of microcontrollers, which are outfitted with a new Configurable Logic Block module.

Read more...
MCU for battery-powered applications
Altron Arrow DSP, Micros & Memory
Included in ST’s family of devices is the STM32U031, an ultra-low-power MCU featuring an ARM Cortex-M0+ 32-bit core running at up to 56 MHz.

Read more...
Serial SRAM up to 4 MB
EBV Electrolink DSP, Micros & Memory
The chips are designed to provide a lower-cost alternative to traditional parallel SRAM products, and include optional battery backup switchover circuitry in the SRAM memory to retain data on power loss.

Read more...
SiP supports LTE/NB-IoT and GNSS
RF Design DSP, Micros & Memory
The nRF9151 from Nordic Semiconductor is an integrated System-in-Package that supports LTE-M/NB-IoT, DECT NR+ and GNSS services.

Read more...
Qi2 dsPIC33-based reference design
DSP, Micros & Memory
Powered by a single dsPIC33 Digital Signal Controller, the Qi2 reference design offers efficient control for optimised performance.

Read more...
MIKROE’s IDE now includes MPLAB XC compilers
DSP, Micros & Memory
MIKROE has announced that the latest version of its multi-architectural IDE, NECTO Studio 6.1, now includes Microchip’s MPLAB XC compilers for 8-, 16- and 32-bit MCUs.

Read more...