Telecoms, Datacoms, Wireless, IoT


RFICs for 4G and LTE cellular base stations

14 October 2009 Telecoms, Datacoms, Wireless, IoT

Analog Devices has introduced a series of highly integrated RFICs (radio frequency integrated circuits) designed for LTE lLong term evolution) and 4G cellular base stations.

LTE is a set of enhancements to the UMTS (universal mobile telecommunications system) standard and is considered to be the last step toward the fourth generation of radio technologies in cellular networks. As worldwide mobile carriers evolve toward 4G technologies, small higher-density radio card form factors are needed to support the delivery of continuous voice and high-data-rate services. AD’s new ADRF660x series of mixers and ADRF670x series of modulators enable these high-density radio cards by combining multiple discrete functional blocks into a single device, while meeting the demanding performance required by higher-capacity base stations.

The ADRF660x and ADRF670x series each début with four pin-compatible devices that cover the commonly used cellular 2G, 3G and LTE frequency bands and ease system design through integration, allowing for a common footprint PCB design for all cellular frequency bands and air interface standards.

The four ADRF670x products integrate a high dynamic range analog I/Q modulator, RF output switch and PLL (phase locked loop) with integrated VCO (voltage controlled oscillator) in one compact RFIC. The modulator input bandwidth of 500 MHz is capable of supporting either a specified band or complex IF up-conversion transmit signal paths. In addition, the modulator output supports a linear high output power level for wideband multicarrier LTE applications.

The four ADRF660x products integrate a high-linearity active RF mixer, RF input balun for single-ended 50 input and a PLL synthesiser with integrated VCO. The active mixer provides a voltage conversion gain of 6 dB, alleviating the need for additional IF amplification. The differential IF output is capable of supporting high IF frequencies up to 500 MHz. The ADRF660x series can be used for receiver path down-conversion and transmit path observation receiver applications.

All eight devices share a common SPI control interface and are software compatible. The integrated PLL is a multimodulus Fractional-N synthesiser designed to support LTE’s 100 kHz channel raster and offers low in-band phase noise. For added flexibility, all devices provide a buffered local oscillator (LO) output and allow the use of an external VCO.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved