News


Researchers increase efficiency of fuel cells

28 April 2010 News

Fuel cells are promising energy devices that are currently under much development. Direct methanol fuel cells are an example of promising technology in this field.

Instead of using hydrogen, direct methanol fuel cells use methanol as fuel. They therefore offer a potential technology for portable consumer electronics applications. Mass commercialisation of the fuel cells has not been realised due to technological limitations of the technology. The challenges with direct methanol fuel cells include methanol crossover that limits the efficiency of the fuel cell and the use of expensive platinum catalysts on the electrodes. Reducing or eliminating the use of platinum has therefore been a major research theme.

One of the research groups working on this challenge is the Massachusetts Institute of Technology (MIT). The MIT researchers, working together with researchers from the Brookhaven National Laboratory and the Japan Institute of Science and Technology, found a way to lower the usage of platinum in direct methanol fuel cells by significantly increasing the efficiency of the fuel cell electrodes. Other previous developments to reduce platinum usage include replacing the fixed platinum catalysts on the cathode with a liquid regenerating catalyst system called catholyte solution.

In the MIT research, platinum nanoparticles were deposited on the surface of multiwall carbon nanotubes. The researchers discovered that the key for the efficiency increase is in the surface texture of the electrode material and not the size of the particle as previously thought. Multiple tiny step-like shapes are crated on the surface instead of leaving the surface smooth and in doing so, double the amount of electricity. The researchers found that the surface steps on the platinum nanoparticles correlate with the electrochemical activity and stability, which can be over hundreds of cycles. The activity of carbon monoxide and methanol electro-oxidation were enhanced with the step surface. The researchers reported that increasing surface steps on the platinum nanoparticles of around 2 nm leads to enhanced activity of up to about 200% for electro-oxidation of methanol.

The researchers believe that further development of the surface structure will produce greater electric current. With a given amount of platinum, much greater electric current can be produced. Understanding the mechanism of how this works can lead to the development of fuel cells that have lower amount of platinum in the fuel cells. The researchers are working on creating more surface steps to further increase the activity of the electrode. The team also hopes to understand whether the steps can enhance the oxygen reduction part of the process that takes place in the other side of a fuel cell.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)18 464 2402, patrick.cairns@frost.com, www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Plan your media strategy with Technews Publishing
23 October 2019, Technews Publishing , News
Dear Marketer, Have you ever looked back on a year and wondered how you survived it? For the majority of South Africans, 2019 started benignly enough, cosily wrapped in the blanket of Ramaphoria that ...

Read more...
From the editor’s desk: Getting charged up for the new year
25 November 2019, Technews Publishing , News
The Springboks’ Rugby World Cup triumph in Japan couldn’t have come at a better time for South Africa, as the country was in desperate need of a jolt of positive energy going into the festive season. ...

Read more...
Battery Technologies Conference 2019
25 November 2019 , News, Editor's Choice
Batteries are a critical enabler of the Fourth Industrial Revolution, powering technology in products from laptops and handheld devices to electric vehicles and renewable energy storage.

Read more...
Boom, doom and gloom, or something completely different?
25 November 2019, Technews Publishing , News, Editor's Choice
As the end of 2019 looms, it’s time to look ahead to what next year might have in store, and reflect on the year gone by. And what a year it’s been.

Read more...
Actum Group remains resilient and optimistic for 2020
25 November 2019, Actum Electronics , News
Running a profitable business in South Africa is not for the fainthearted. With the national treasury downgrading this year’s growth forecast from 1,5% to 0,5%, and state-owned entities like Eskom negotiating ...

Read more...
Additional renewable energy development zones proposed
25 November 2019 , News
The second phase of the Strategic Environmental Assessment (SEA) for wind and solar photovoltaic (PV) energy in South Africa proposes three additional Renewable Energy Development Zones (REDZs) for wind ...

Read more...
Locally developed electronic circuit builder for students
25 November 2019, K Measure , News, Editor's Choice
K Measure, creator of the award-winning Seebox engineering education solution, has created a new innovation to enable quick and easy electronic circuit-building. The SeeBlocks electronic circuit creator ...

Read more...
Clearing the Static:Topic 9: Time to audit your ESD environment
25 November 2019, Actum Electronics , News
Now that we are nearing the end of the year, it is a good time to audit your existing static control products and procedures. The first line of defence should be your antistatic floor, since this is the ...

Read more...
Winning hackathon entry curbs cell tower battery theft
25 November 2019 , News
The fourth annual TADHackJHB was held at MTN’s head office in Fairland, Johannesburg, on 12 and 13 October, with a cell tower protection app emerging as the winner. The theme for the 2019 global TADHack ...

Read more...
Products of the Year 2019
25 November 2019 , News
SmartServer IoT by Adesto    BAW-based chips for comms infrastructure    Cellular modules for LPWA applications    SoCs and software for smart home and IIoT    Secure element for IoT authentication    MPU for embedded ...

Read more...