Power Electronics / Power Management


Integrating FETs into PoE controllers

15 September 2010 Power Electronics / Power Management

Power over Ethernet (PoE) controllers for power sourcing equipment (PSE) use high-voltage, high-current field-effect transistors (FETs) to connect the power source to the load.

Integrating the FET devices within the PoE controller reduces the space required to implement the PSE subsystem and also reduces component count.

For example, with a standard TO-223 FET package and two 0805 resistors for current sensing, the external FETs use about 50 mm² of package area per port. When the controller size is added, the package area per port is approximately 70 mm², compared to less than 20 mm² for a typical PoE controller with integrated FETs. Additional advantages of integrating FETs on the PoE controller include higher reliability due to reduced component count, fewer interconnections and guaranteed coordination with the PoE controller fault protection and current limit.

When the FET is integrated, the current sense resistor is also typically integrated, which reduces noise and offset effects and typically allows the use of smaller sense resistors for less current sensing power loss. While the advantages of using the integrated FET are compelling, the reduced size means more care must be taken to avoid excessive heating in both normal and transient conditions. This article takes a closer look at some of the precautions that must be taken when integrating FETs with PoE controllers, using Silicon Labs’ recently introduced Si3452 PoE controller with on-chip FETs as an example.

FET current carrying requirements

Until recently, the required power level for a PoE PSE system was 15,4 W. The recently adopted 802.3at amendment to the IEEE standard increases the power level to 30 W for ‘Type 2 circuits’ (cat 5E or better cable). The requirements for DC and transient current limit performance, as well as typical current limits, are shown in Table 1. This makes it clear that the FET must be capable of handling high DC current and high transient power conditions.

Table 1. FET current carrying requirements
Table 1. FET current carrying requirements

DC current levels

When using integrated FETs, some care is required because, typically, four or more ports can be supported on one IC. As a result, I²R losses from all ports combine.

For example, the Si3452 4-port PoE controller has a maximum combined FET and current sense resistance of 0,6 Ω. In a worst-case situation, with all four ports carrying 600 mA, the power dissipated is 1,2 W (including Vdd and Vee consumption). The Si3452 is packaged in a 6 x 6 mm QFN with exposed pad. To dissipate this amount of heat, it is recommended that the exposed pad be connected by 25 vias to a heat spreading layer on the back of the PCB with at least 6,45 cm² of copper per IC. With this recommended layout, the thermal impedance is 32°C/W with no airflow, and the worst case rise is less than 40°C.

The Si3452 is rated for a junction temperature of 125°C. Therefore, operation at 85°C is possible even without forced air cooling. Figure 1 shows the measured 34,6°C thermal rise of a Si3452 with four ports carrying the worst-case 600 mA.

Figure 1. Measured thermal rise of Si3452 with four ports carrying 600 mA
Figure 1. Measured thermal rise of Si3452 with four ports carrying 600 mA

Transient conditions

The FET must be protected against faults and start-up transient conditions. Normally, the FET source is connected by a current sense resistor to a Vee supply of as much as -57 V, and the drain is clamped to ground. The worst case fault causes 57 V of drain voltage on the FET while it is in the on state. When using an external FET, it is not practical for the PoE controller IC to measure the FET temperature for protection. Therefore, the FET current limit and overload timing (TICUT) must be adjusted to fall within the safe operating area (SOA) of the FET (see Figure 2).

Figure 2. Typical FET SOA curves
Figure 2. Typical FET SOA curves

As can be seen in Figure 2, the required current limit and time are very close to the transistor SOA. A special technique, referred to as foldback current limiting, must be employed in this situation. Using this foldback current limit approach, the current limit is reduced as the FET drain voltage increases above a certain level (typically 25 V).

The use of integrated FETs makes it possible to locate thermal sensors close to the FET. The circuitry is arranged to turn off the FET if the thermal sensors activate, providing an additional level of safety against FET damage from fault conditions. Typically, these techniques are combined, resulting in the integrated FET being better protected against fault conditions despite the small size.

One concern with this approach is that a fault on one port might cause a thermal overload indication on another port. This issue can be avoided by placing the thermal sensors near each FET so that severe overloads are detected on a per-port basis. Overloads that are not as severe are protected by monitoring port current and shutting the port off after the required time. Combining these approaches prevents a fault on one port from affecting other ports.

Summary

Table 2 summarises the issues with integrating FETs in PoE PSE controllers and the techniques for dealing with these issues in integrated FET controllers. By using the techniques described above, FETs can be safely integrated into PoE PSE controllers, allowing significant savings in cost, component count and required PCB area. Figures 3 and 4 show representative layouts for 12 port comparing the Si3452 with integrated FETs to a 12 port solution without the integrated FETs.

Table 2. Summary of issues with integrating FETs in PoE PSE controllers
Table 2. Summary of issues with integrating FETs in PoE PSE controllers

Figure 2. Typical FET SOA curves
Figure 2. Typical FET SOA curves

Figure 4. Representative layout of 12 ports without integrated FETs. (FETs are on the backside. Photo is to the same scale as Figure 3
Figure 4. Representative layout of 12 ports without integrated FETs. (FETs are on the backside. Photo is to the same scale as Figure 3

As shown in the comparative photos of Figures 3 and 4, even with the required 6,45 cm² heat spreading layer, the PoE controller solution with integrated FETs occupies less than one half of the PCB area as the layout without integrated FETs – even without using backside components. Integrating FETs on PoE controllers reduces component count, BOM cost and board size, while ultimately enhancing PSE system reliability.

For more information contact Gary de Klerk, NuVision Electronics, +27 (0)11 894 8214, [email protected], www.nuvisionelec.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The role of bidirectional charging in the evolving energy landscape
Avnet Silica Power Electronics / Power Management
As reliance on renewable sources like wind and solar continues to grow, the need for efficient energy flow and storage solutions has become more critical than ever.

Read more...
How to calculate a buck converter’s inductance
Power Electronics / Power Management
In the buck circuit, the inductor design is a key element that is closely related to system efficiency, the output voltage ripple, and loop stability.

Read more...
High-current EMI filters
Accutronics Power Electronics / Power Management
TDK has introduced 20 and 40 A, 80 V DC board-mount EMI filters, reducing differential mode conducted emissions for switching power supplies with high input current requirements.

Read more...
Isolated SMD DC-DC converters
iCorp Technologies Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.

Read more...
Next-gen power meter
Electrocomp Express Power Electronics / Power Management
The VT-PWR-LV is a next-gen Vista Touch power meter from Trumeter for single, split, and three-phase systems.

Read more...
Advanced PMIC for high-performance AI applications
ASIC Design Services Power Electronics / Power Management
Microchip Technology has announced the MCP16701, a Power Management Integrated Circuit (PMIC) designed to meet the needs of high-performance MPU and FPGA designers.

Read more...
New SiC power MOSFET
Future Electronics Power Electronics / Power Management
STMicroelectronics’ SCT012H90G3AG is a robust, automotive-grade SiC MOSFET, engineered for demanding power electronics, featuring a 900?V drain-source voltage and exceptionally low on-resistance of 12?mO at 60?A.

Read more...
Fundamental motor control design challenges and solutions
Power Electronics / Power Management
Mouser Electronics has announced a new eBook in collaboration with Qorvo, featuring industry experts providing key insights into methods, power efficiency and integration solutions available for motor control applications.

Read more...
Power management IC for battery products
Power Electronics / Power Management
The nPM1304 PMIC complements Nordic’s nPM1300 PMIC with a highly integrated, ultra-low power solution and precision fuel gauging for small size battery applications.

Read more...
Powering Innovation eBook: Changing what’s possible
Power Electronics / Power Management
This exclusive read, entitled ‘Changing what’s Possible,’ delves into how power dense Vicor modules enable many world-changing innovations across various sectors.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved