Power Electronics / Power Management


Keep the battery in mind

4 September 2013 Power Electronics / Power Management

When it comes to designing the latest electronic device or gadget, all too often the battery is the last thing to be considered, leading to performance issues, safety concerns and, in some extreme cases, costly redesigns. With this in mind, Uniross has compiled the following list of factors to keep in mind when designing electronic equipment which relies on a battery for its source of power.

Consult a specialist: whilst the Internet is a great source of information, it can also be inaccurate and unreliable. Rather consult with a battery engineer or specialist before starting any new development.

Use commonly available batteries: Always try to design equipment around commonly available battery sizes and chemistries. Due to economies of scale, mass produced batteries are always cheaper and more readily available.

Dimensional tolerances: Although batteries are generally manufactured according to standard sizes, it is quite common to find marginal dimensional differences between manufacturers and even batches. Where possible, try to design equipment to accommodate these dimensional tolerances. This will also allow you to change manufacturers later down the line, should the need arise.

Operating temperature: All batteries, no matter the chemistry or manufacturer, are susceptible to extreme temperatures, be they high or low. It is therefore imperative to consider the environmental operating temperatures in which the battery will be placed. These temperatures can have an adverse effect on the performance of the battery.

Allow batteries to breathe: Where possible, try to design the battery compartment to allow the battery to breathe (vent) and expand or contract. Batteries can expand and contract during operation, and in worst-case scenarios, even vent dangerous gases. A battery compartment which allows for this phenomenon is good design practice.

Avoid additional heat: Batteries are very susceptible to high temperatures, so try to locate tham as far away as possible from any heat source to prevent service degradation. A provision for ventilation or insulation can help.

Battery contacts: The use of good quality battery contacts is essential to good battery performance. Pure nickel is one of the best materials that one can use in the manufacturing of a battery contact.

Low-voltage shutoff: Always design equipment to switch off after the battery voltage has dropped below the functional limit of the device. This is especially true of devices which leave the battery on a virtual short circuit when the voltage level has dropped. Electrolyte leakage can occur under these conditions.

Service life: Not all batteries will give the same service life. In addition, there are many factors which can affect the service life of a battery; factors such as environmental conditions (high and low temperatures), operational conditions (rate of discharge / depth of discharge), all of which contribute towards the service or cycle life of the battery. So, if you are expecting to get 1000 cycles from a rechargeable battery, for example, you absolutely have to consider the conditions which you are subjecting the battery to. If uncertain, rather have a battery specialist perform a life cycle simulation test. That way you can be certain that your battery will indeed give you the service life you’re expecting.

Transportation requirements: Most batteries are considered to be hazardous by the major airlines and their regulating bodies, thus classifying them as restricted cargo. This does not mean that you cannot transport batteries by air, but it is increasingly difficult to do so, especially if the equipment you designed contains a lithium type battery. Before you start designing, simply consult with a battery specialist who can inform you of the transport regulations and restrictions for the various battery chemistries, and avoid costly expenses after the fact.

For more information contact Uniross Batteries, +27 (0)11 466 1156, [email protected], www.uniross.co.za.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Analysis of switch-mode power supply: inductor violations
Altron Arrow Editor's Choice Power Electronics / Power Management
Common switch-mode power supply (SMPS) design errors are discussed, and their appropriate rectification is specified, with details on complications that arise with the power stage design of DC-DC switching regulators.

Read more...
Compact PCB-mount SMPS
RS South Africa Power Electronics / Power Management
Traco Power’s 5W PCB-mount switch mode power supply (SMPS) offers high efficiency, and is well suited for a variety of applications in the automation, electronics, electrical and mechanical industries.

Read more...
AC-DC brick PSU
Conical Technologies Power Electronics / Power Management
These PSUs have a typical efficiency of up to 92%, and a power factor value of up to 0,99. They are available in 12, 24, 28, 48 and 54 V output versions.

Read more...
5 kW switching PSU range
Conical Technologies Power Electronics / Power Management
Mornsun has released a new switching power supply range, the LMF5000-25Bxx, which has a 5000 W capacity, and features universal AC input configurations.

Read more...
Reliable charging range
Current Automation Power Electronics / Power Management
Whether you’re powering essential electronics, keeping emergency equipment operational, or maintaining the performance of critical machinery, the need for dependable charging solutions cannot be overstated.

Read more...
Microchip expands its mSiC solutions
EBV Electrolink Power Electronics / Power Management
The highly integrated 3,3 kV XIFM plug-and-play digital gate driver is designed to work out-of-the-box with high-voltage SiC-based power modules to simplify and speed system integration.

Read more...
Dual-port USB-C power delivery solution
Altron Arrow Power Electronics / Power Management
Infineon’s CYPD7272-68LQXQ is the tray packing option of the company’s dual-port USB-C power delivery solution and features an integrated dual-port USB-C PD + DC-DC controller.

Read more...
Parallel redundancy power module
Conical Technologies Power Electronics / Power Management
The LIR40-40 is a wide input range DC-DC module, with a constant output of 48 V at a nominal output current of up to 40 A.

Read more...
Motor protection relay front-end
NewElec Pretoria Power Electronics / Power Management
Newelec’s Motor Protection Relay front-end software isn’t just another tool, it’s a game changer that puts control firmly in your hands.

Read more...
High-power three-phase supplies
Current Automation Power Electronics / Power Management
The units from Meanwell can either be supplied with a three-phase three-wire delta input of 196 to 305 V AC, or they can use a three-phase four-wire star connection of 340 to 530 V AC.

Read more...