DSP, Micros & Memory


Microcontrollers for low-power HMI applications

4 September 2013 DSP, Micros & Memory

Typical modern HMI application.
Typical modern HMI application.

For battery powered applications such as electric toothbrushes, razors and personal medical equipment such as blood pressure monitors that traditionally used mechanical switches, logic circuits or small, simple-function MCUs and discrete LCD drive circuits, there is increasing consumer demand for additional functionality combined with the necessity of longer product operation between battery charges.

These next-generation, miniature battery powered portable devices may have a single or multiple LCD displays, require timer or motor control functionality or may even require wireless functionality.

RL78/L1x block diagram.
RL78/L1x block diagram.

Combining this demand for such additional features whilst at the same time increasing battery life is driving growth for low-pin-count, low-cost and ultra low-power MCUs that offer a platform approach for multiple features. Some vendors offer low pin count MCUs, some offer low power features to reduce current consumption from the MCU core or peripherals, but this is not sufficient to offer lower total system power whilst driving a Human Machine Interface (HMI) or the integrated LCD.

The LCD display used for a product’s HMI is usually a basic alphanumeric pixel panel and may include some timer display or display some simple visual operation relevant to the application. The new Renesas RL78/L1x (LCD) series offers multiple low-power modes combines with a unique method that allows up to 50% reduction in MCU energy consumption whilst driving an LCD display compared to legacy solutions.

Low-cost evaluation board.
Low-cost evaluation board.

The alphanumeric displays used in these miniature applications for the HMI are usually physically small with low pin count. Each of the relevant pins requires drive to each of the individual display segments. The drive will be AC as DC drive causes electromechanical reactions that can reduce display life.

This AC drive is effectively time division multiplex (TDM)-driven but the number of time divisions needs to be twice the number of common planes of the display to ensure the voltage at all segment locations is reversed periodically to avoid any DC voltage. Generating these divisions as waveforms is handled by the LCD controller. However, it is necessary to generate the required number of intermediate bias voltages and there are several means for achieving this.

The RL78/L1x family features split capacitance LCD drive. This capacitor split method of generating the LCD bias voltages can halve the power consumption. It is similar in principle to traditional resistive splitting, where the required bias voltages are defined by the values of external capacitors. The capacitor split method ensures there is no wasted current flowing continually through the resistive split bias chain or consumed by a capacitive charge pump circuit.

Full starter kit.
Full starter kit.

In the case of the RL78/L12, the capacitor split method enables an ultra low-power mode (sub halt) that consumes a mere 0,62 μA at 3 V with the LCD active and RTC running. This is less than half of the typical 1,5 μA current taken by traditional voltage boost or resistive split methods. Even these figures disguise the true power saving – the capacitive split circuitry only draws 0,12 μA, with the other 0,5 μA being consumed by the real-time clock.

The traditional method for driving the display i.e., doing this externally with a simple resistive divider chain between supply and ground, can also be achieved with the RL78/L1x family. The values of the resistors will be determined by the required bias voltage levels, but will need to be low enough to not be affected by the capacitive load presented by the LCD panel; it may even be necessary to add smoothing capacitors between the bias points and ground to stabilise the levels.

Alternatively, the voltage boost method can also be handled by the RL78/L1x using an internal circuit. This typically uses a reference voltage equal to the lowest bias level and then multiplies this up by as many times as necessary to provide the higher bias levels. One advantage of this approach is that the bias levels can be independent of the controller’s supply voltage.

Two starter kits are available for the new RL78/L12 family: the low-cost Renesas Promotion Board (RPB) for simple evaluation and the Renesas Starter Kit (RSK) for full evaluation and development.

For more information contact Marinus Rudman, Hi-Q Electronics, +27 (0)21 595 1307, [email protected], www.hi-q.co.za.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The 8-bit survival syndrome – Part 2
DSP, Micros & Memory
Just like the 4-bit pre-microcontroller, the 8-bit MCU has been finding ways to stick around. Their features and speeds have been improving, offering competitive reasons to work with them.

Read more...
Enhanced code protection for USB µC portfolio
Future Electronics DSP, Micros & Memory
To help easily incorporate USB power and communication functionality into embedded systems, Microchip Technology has launched the AVR DU family of microcontrollers.

Read more...
General-purpose MCU with RISC-V architecture
EBV Electrolink DSP, Micros & Memory
Renesas has released a general-purpose MCU to enhance its existing RISC-V portfolio, and this is its first MCU using a RISC-V core developed internally at the company.

Read more...
8-bit MCU with I3C support
Avnet Silica DSP, Micros & Memory
The PIC18-Q20 8-bit microcontrollers from Microchip easily interface with devices operating in multiple voltage domains, and the built-in I3C interface supports higher-speed and lower-power data transfers than I2C.

Read more...
An evolutionary step in customisable logic
Altron Arrow DSP, Micros & Memory
Microchip Technology is offering a tailored hardware solution with the launch of its PIC16F13145 family of microcontrollers, which are outfitted with a new Configurable Logic Block module.

Read more...
MCU for battery-powered applications
Altron Arrow DSP, Micros & Memory
Included in ST’s family of devices is the STM32U031, an ultra-low-power MCU featuring an ARM Cortex-M0+ 32-bit core running at up to 56 MHz.

Read more...
Serial SRAM up to 4 MB
EBV Electrolink DSP, Micros & Memory
The chips are designed to provide a lower-cost alternative to traditional parallel SRAM products, and include optional battery backup switchover circuitry in the SRAM memory to retain data on power loss.

Read more...
SiP supports LTE/NB-IoT and GNSS
RF Design DSP, Micros & Memory
The nRF9151 from Nordic Semiconductor is an integrated System-in-Package that supports LTE-M/NB-IoT, DECT NR+ and GNSS services.

Read more...
Qi2 dsPIC33-based reference design
DSP, Micros & Memory
Powered by a single dsPIC33 Digital Signal Controller, the Qi2 reference design offers efficient control for optimised performance.

Read more...
MIKROE’s IDE now includes MPLAB XC compilers
DSP, Micros & Memory
MIKROE has announced that the latest version of its multi-architectural IDE, NECTO Studio 6.1, now includes Microchip’s MPLAB XC compilers for 8-, 16- and 32-bit MCUs.

Read more...