Analogue, Mixed Signal, LSI


Magnetoresistive sensor ICs

16 July 2014 Analogue, Mixed Signal, LSI

Honeywell’s Nanopower series magnetoresistive (MR) sensor ICs are ultra-sensitive devices designed to accommodate a wide range of applications with large air gaps, small magnetic fields and low power requirements. They respond to either a North or South Pole applied in a direction parallel to the sensor, and do not require the magnet polarity to be identified. The devices boast very low average current consumption and a push-pull output which does not require a pull-up resistor. They can operate from a supply voltage as low as 1,65 V and are available in two magnetic sensitivities to accommodate a variety of application needs. The sensor ICs are supplied in the SOT-23 surface mount package on tape and reel.

TRX Electronics, 086 111 2844, [email protected], www.trxe.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High-temperature closed-loop MEMS accelerometer
RS South Africa Analogue, Mixed Signal, LSI
This sensor from TDK is a high-temperature MEMS accelerometer with ±14 g input range and a digital interface for measurement while drilling applications.

Read more...
How smart components drive sustainable industrial efficiency
TRX Electronics Editor's Choice Manufacturing / Production Technology, Hardware & Services
Manufacturing industries across South Africa face mounting pressure to reduce operational costs whilst meeting increasingly stringent environmental regulations, and the path to achieving these goals lies in embracing advanced electronic components that enable smarter, more efficient industrial operations.

Read more...
High stability Xsens IMU
TRX Electronics Telecoms, Datacoms, Wireless, IoT
New Xsens motion sensor module, which provides a cost-effective solution for functions such as platform stabilisation or orientation/positioning data, is easy to integrate into high-volume product designs.

Read more...
Dual accelerometers on the same die
Altron Arrow Analogue, Mixed Signal, LSI
The LSM6DSV320X is the first mainstream inertial sensor to house a gyroscope alongside two accelerometers, one capable of sensing up to ±16 g and one sensing up to a staggering ±320 g.

Read more...
Dual-range IMU with edge processing
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s innovative LSM6DSV80X combines two accelerometer structures for 16 g and 80 g full-scale sensing, a gyroscope up 4000 dps, and embedded intelligence in a single component.

Read more...
High-reliability isolation amplifiers
EBV Electrolink Analogue, Mixed Signal, LSI
The VIA series of isolation amplifiers from Vishay are designed to deliver exceptional thermal stability and precise measurement capabilities.

Read more...
Mibbo QT2C Series signal isolators
Conical Technologies Analogue, Mixed Signal, LSI
The Mibbo QT2C Series isolators support a rich combination of input and output signals, working with either current loops or voltage levels.

Read more...
The evolution of power management in electronics
TRX Electronics Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Mouser now shipping onsemi’s image sensors
TRX Electronics Opto-Electronics
The AR0145CS is a 1/4,3-inch CMOS digital image sensor with a 1280 (H) x 800 (V) active-pixel array that can capture both continuous video and single frames.

Read more...
IMU with dual-sensing capability
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s 6-axis inertial measurement unit integrates a dual accelerometer up to 320g and embedded AI for activity tracking and high-impact sensing.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved