Test & Measurement


Thermal testing of assembled circuit boards using IR imaging

17 September 2014 Test & Measurement

More and more manufacturers of electronic components and circuit boards are turning to the use of non-contact temperature measurement to meet increasing productivity demands.

Thermal behaviour can be captured and optimised through the use of modern infrared (IR) measurement devices, without influencing the measured object.

Infrared cameras are used for accurate thermal analysis at the electronic component level. This is particularly applicable, for example, in cases where not only one critical component exists or the component cannot be clearly identified. Weak points in these cases can be localised by the camera through the analysis of thermal images.

Figure 1. Small USB thermal imager for 120 Hz real-time analysis of thermal behaviour of assembled circuit boards.
Figure 1. Small USB thermal imager for 120 Hz real-time analysis of thermal behaviour of assembled circuit boards.

Detailed real-time analysis of the thermal behaviour of assembled circuit boards, used in the R&D field or for serial production, can be achieved with the assistance of an IR thermal imager. A standard USB2.0 interface is included in Optris imagers which allows video recording of 120 Hz. This is advantageous for spurious thermal activity which needs to be analysed in slow motion afterwards.

Analysis takes place via efficient software which allows alarms to be defined and displayed, in addition to maximum, minimum and average temperatures. Besides the recording function, the software also offers the possibility to store snapshots.

The Optris PI160 thermal imager consists of 160 x 120, or 19 200, miniature detectors in a matrix on a single chip. This uncooled microbolometer focal plane array (FPA) detector experiences a change in resistance proportional to aborbed heat radiation. A fast 14-bit analog-to-digital converter measures the resulting voltage drop, after which digital signal processing calculates the temperature for each pixel and generates a colour image in real time.

Adjustments to measurement distances and areas are achieved through the combination of the micro bolometer FPA detector and a high-performance optic. Thermal characteristics of objects as small as 50 μm are detectable thanks to the detector’s tiny pixels. The temperature of anything from a size of 0,5 mm can be measured precisely, and thermal sensitivity of 0,08 K allows the display of fine temperature details.

Figure 2. Infrared thermometer during temperature measurement of assembled circuit board.
Figure 2. Infrared thermometer during temperature measurement of assembled circuit board.

No camera required

With high production volumes and a large number of test stations, the use of infrared cameras can become too expensive. Temperature monitoring with infrared thermometers is thus a good alternative for series production control of critical components within production facilities.

Critical components which are consistently placed in identical positions on printed circuit boards can be monitored via the Optris CT LT infrared temperature sensor. The measurement result is then forwarded to the test station for decision making.

Figure 3. The Optris CT LT’s miniature sensor head and control box.
Figure 3. The Optris CT LT’s miniature sensor head and control box.

Miniaturised IR thermometer for permanent control

Modern production technology not only enables cost reductions within the manufacturing process, it also opens up multiple uses for infrared thermometers within equipment. The Optris CT LT can be used for practical applications such as the checking of assembled circuit boards.

It is one of the smallest of its kind, consisting of a miniature infrared sensing head (14 x 28 mm) and a separate control box. It measures temperature with a linear output covering the complete temperature range from -50°C to 975°C. The small size of the sensing head allows implementation in cramped surroundings and is therefore particularly suitable for test stations with very little spare space.

The sensing head comes in a stainless steel housing (IP65) which is robust and intended for use in temperatures up to 180°C without additional cooling. A high-resolution optic with a distance-to-measurement-point ratio of 22:1 provides a flexible choice regarding the installation point within the test station. An additional feature is the possibility to measure spot sizes down to 0,6 mm thanks to a small ancillary lens.

The measured temperature signal of the circuit board is made available to the operator via linear 0-20 mA, 4-20 mA, 0-10 V or thermocouple outputs.

A control panel with LCD display can be used to choose the signal processing method as well as parameter adjustment at the assembly area.

Programming can take place through a USB or RS-232 interface, supported by a PC or laptop computer. Addressable interfaces are also available, including RS-485, CAN-Bus, Profibus DP, Ethernet and alarm relays.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High-speed AWG generates up to 20 sine waves
Vepac Electronics Test & Measurement
Spectrum Instrumentation has released a new firmware option for its range of versatile 16-bit Arbitrary Waveform Generators, with sampling rates up to 1,25 GS/s and bandwidths up to 400 MHz.

Read more...
Digitisers upgraded with pulse generator option
Vepac Electronics Test & Measurement
Spectrum Instrumentation has added the Digital Pulse Generator option to its ultrafast digitisers (with up to 10 GS/s speed) and arbitrary waveform generators.

Read more...
Network Master Pro to provide support of OpenZR+
Tamashi Technology Investments Test & Measurement
Anritsu Corporation has introduced the 400G (QSFP-DD) multi-rate module MU104014B that supports the new interface standard.

Read more...
Upgrade brings extra layer of detection to Fluke’s acoustic imagers
Comtest Test & Measurement
The firmware 5.0 update helps to boost efficiency and allows maintenance technicians to scan large areas quickly, and visually pinpoint technical issues before they become critical.

Read more...
Companies collaborate on EnviroMeter
Avnet Silica Test & Measurement
STMicroelectronics and Mobile Physics have joined forces to create EnviroMeter for accurate air-quality monitoring on smartphones. Time-of-flight optical sensing enables an accurate personal air quality monitor and smoke detector.

Read more...
PCB test points
Vepac Electronics Test & Measurement
Maintaining these access points in the final production versions will prove invaluable during the life of the equipment for service, adjustment, and debug, or repair activities.

Read more...
RFID reader
Test & Measurement
The EXA81 from Brady turns any smartphone or tablet into a personal radar that can pick up radio signals from all RFID-labelled items.

Read more...
Proximity sensor with VCSEL
Avnet Abacus Test & Measurement
Vishay’s newest small package proximity sensor, the VCNL36828P, combines low idle current with an I2C interface and smart dual slave addressing.

Read more...
CNH data output devices for AI applications
Altron Arrow Test & Measurement
STMicroelectronics’ CH family of time-of-flight sensor devices feature compact and normalised histogram (CNH) data output for artificial intelligence applications requiring raw data from a high-performance multizone ToF sensor.

Read more...
Webinar: The key to smart occupancy
Test & Measurement
This one-hour session will allow the attendee to discover the company’s latest infrared sensor with high-sensitivity presence and motion detection capabilities.

Read more...