Telecoms, Datacoms, Wireless, IoT


Better user interfaces using Bluetooth low energy

22 February 2017 Telecoms, Datacoms, Wireless, IoT

Many different industries and application areas make use of standalone devices. These are devices that, without need for interactions, are used to control local equipment. A good example is a heating control system hidden in the basement of a building, quietly doing its work without any need for interaction with the device. There are many similar devices in other areas as well, e.g. local medical devices, distributed pump controllers, and other control systems not connected to a network.

There are many such devices out there, and this will still be the case even in the connected world of the Internet of Things.

Typically, these types of devices are constrained in cost, and as the systems seldom require interaction, a user interface is one of the areas for saving cost. Such devices typically have only a few buttons and a single-line text display.

But during commissioning and maintenance of the device, the installer or the maintenance technician needs to interact with the system using a cumbersome user interface. He will also need to rely on a thick manual to know how to interact with the device and to understand strange numeric codes to identify the parameters the system needs to operate.

Why not replace the buttons and single-line display with a Bluetooth low energy connection? True, this is not a new use case, but I strongly believe that there are many more types of devices where this can be used than what we see today.

Bluetooth low energy was introduced as part of the Bluetooth standard when Bluetooth 4.0 was introduced and is a lightweight radio technology that fits this use case well.

The basic concept of reading and writing attributes that was introduced in Bluetooth low energy (called GATT, Generic Attribute Profile) suits this scenario very well. Configuration parameters and status indications can be represented as GATT attributes. Another possibility is to use a serial abstraction over Bluetooth low energy that many of the chip and module manufactures have in their offering. A simple protocol might be implemented on top of the serial abstraction to transfer configuration parameters and status information.

The enabler for a better user interface is of course the fact that Bluetooth low energy is supported in all standard phones, tablets and laptops in the market. All installers and service technicians have a user interface in their pockets. The device manufacturer needs to develop a phone/tablet app for their devices, which today is a rather straightforward task and not too expensive.

Benefits of using a Bluetooth low energy app as machine GUI

The basic benefit is of course that you have a full graphical user interface with many interaction possibilities using multi-touch technologies. You may present historical data in graphs, represent the data from the device in a user-friendly format and support multiple languages. Another option is to have multiple user interfaces, e.g. one interface for the installer and another for the maintenance technician.

As the phone or tablet is normally connected to the Internet, the installer/maintenance technician can always be up to date with the latest app changes. The Internet connection may be used to extend the user interface, e.g. by supplying the latest maintenance instructions online. The app can support an over-the-air firmware update (FOTA) of the device.

When the phone/tablet is connected, locally stored information can be uploaded to be used later for central analysis (e.g. for central evaluation used for preventive maintenance or to collect information for future product improvements). The same concept can be used to provide a connection between back office experts and the service technicians they assist.

Another benefit is that the device can be completely ‘headless’. Adding buttons, displays and connectors is always a costly challenge for the devices operating in a tough environment. Adding a Bluetooth low energy connection through a chip or a module can be a lower cost solution, as it replaces expensive mechanical design and components for harsh environments.

Implementation

Implementation of the Bluetooth low energy connection can be done by integrating a Bluetooth low energy chip or module into the device. Module integration can be an easy task, because the module is typically delivered as fully Bluetooth qualified with type approved components, thus relieving the device manufacturer from needing to have their own radio and Bluetooth low energy expertise.

One example of a Bluetooth low energy module is the u-blox NINA B1, available with an antenna pin or an internal antenna. The antenna pin variant might be useful if there are mechanical issues that require the antenna to be placed elsewhere than the module (e.g. a full metallic housing). The module/chip is typically connected to the device microcontroller (MCU) through a serial interface (e.g. UART), although there are other possibilities such as SPI, I2C or PIO interfaces.

The NINA B1 module supports different software interfaces to the device MCU. The u-blox Serial Port Service (SPS) is a serial connection abstraction operating over the UART. Another possibility is to use the GATT server functionality over the UART. This enables the device MCU to set up its own GATT attributes to be read/written over the Bluetooth low energy connection and updated from and notified to the device MCU. NINA B1 also provides support for customers to write their own custom application code, e.g. using the ARM mbed development tools.

One ‘issue’ often discussed with Bluetooth is the pairing association between the phone/tablet and a device. In the use case of controller devices, there will be many first time users needing to access a device securely, e.g. a service technician attending to a device for the first time. It is possible for the device to be discoverable all the time and the app may support a mode to search for the device.

If there is only one device visible this might be a good enough option, but even better is to use near field communication (NFC) to do association/pairing with the device. Bluetooth low energy supports a pairing method called out of band pairing (OOB) to enable this. Move your phone close to the device (‘touch’ the device) and when you are close enough, an automatic secure pairing is accomplished. The u-blox NINA B1 module supports NFC OOB pairing.

For more information contact Andrew Hutton, RF Design, +27 (0)21 555 8400, [email protected], www.rfdesign.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved