Telecoms, Datacoms, Wireless, IoT


The five pillars of secure IoT design

19 April 2017 Telecoms, Datacoms, Wireless, IoT

For any industrial Internet of Things (IoT) application, ensuring signal integrity is crucial for safety and operational reliability. However, even the most robust system has many attack surfaces that are vulnerable to would-be ­hackers intent on compromising a system. This is unacceptable for high-reliability systems in general, but as more contextual information gets added, including time and position, the level of compromise increases dramatically, so gaps in security must be identified and closed at every opportunity.

In the case of an IoT sensor, a chain of trust must be established from the sensor to the microcontroller and wireless module, and all the way through to the end application. In industrial applications for the IoT, every attack surface must be secured in order to establish a chain of trust. u-blox refers to this as its five pillars of secure IoT design:

• Device firmware and Secure Boot.

• Communications to the server.

• Interface security.

• Enforcing API control.

• Robustness that includes handling spoofing/jamming.

Secure Boot ensures that a device is executing the intended firmware by authenticating at each stage before booting the next process. Also, while over-the-air updates are useful for mass uploads of many widely deployed IoT devices, they create an attack surface that can be vulnerable, so all firmware must first be validated before being installed. A good implementation will include a backup of a previously authenticated image to allow backtracking if there is a problem.

At the communications or transport layer, a device needs to be able to authenticate itself with the server and all exchanged data should be encrypted, with no possibility of a ‘man in the middle’ attack. Secure key management will allow for this, even on a per-session basis.

The defined APIs that provide access to device functionality are also a vulnerability that must be addressed, though they are often overlooked. This is particularly insidious as hackers usually have a lot of time to look for open APIs and explore their relationship to device functionality and features, which sometimes might include access to paid services. Also, developers often use undocumented APIs for their own test and configuration purposes, so these must be protected too, using the same formal authentication and authorisation processes as used for all APIs.

The fifth link in securing IoT devices involves ensuring robustness, such as when facing jamming or spoofing attempts that might undermine the device’s ability to get accurate position data from a GNSS. The design must be able to detect that the reported information is not accurate and report the situation to the user or IoT network operator.

For more information contact Andrew Hutton, RF Design, +27 (0)21 555 8400, [email protected], www.rfdesign.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Industrial Ethernet time sensitive networking switch
RS South Africa Telecoms, Datacoms, Wireless, IoT
The ADIN3310 and ADIN6310 are 3-port and 6-port Gigabit Ethernet time sensitive networking (TSN) switches with integrated security primarily designed for industrial Ethernet applications.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
Automotive-grade digital isolators
Telecoms, Datacoms, Wireless, IoT
The NSI83xx series of capacitive-based isolators from NOVOSENSE Microelectronics offer superior EOS resilience and minimal power noise susceptibility.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Wi-Fi in 2025: When is Wi-Fi 7 the answer?
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Wi-Fi 7 introduces multi-link operation and lower latency, a game-changing feature that allows devices to transmit and receive data across multiple frequency bands simultaneously to significantly reduce network congestion.

Read more...
Bluetooth Lite SoCs purpose built for IoT
NuVision Electronics Telecoms, Datacoms, Wireless, IoT
Whether it is enabling predictive maintenance on industrial equipment, tracking assets in dense environments, or running for years on a coin cell battery in ultra-low power sensors, developers need solutions that are lean, reliable, and ready to scale with emerging use cases.

Read more...
LTE Cat 1bis module
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The A7673X LTE Cat 1bis module from SimCom is engineered to meet the growing demands of the IoT industry, offering exceptional performance and seamless integration.

Read more...
Track with precision
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX provides innovative antennas for cellular, LTE-M, NB-IoT, LoRa, GNSS, BLE, UWB, Wi-Fi, and future Satellite IoT.

Read more...
Wi-Fi 7 front-end module
RF Design Telecoms, Datacoms, Wireless, IoT
The Qorvo QPF4609 is an integrated front end module designed for 802.11be systems that has integrated matching, which minimises layout area.

Read more...
Multi-channel downconverter
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Downconverter from Crane Aerospace is a converter that operates from 2 to 18 GHz and delivers a noise figure of 11 dB with an attenuation range of 25 dB.

Read more...