Telecoms, Datacoms, Wireless, IoT


How high is a coaxial cable’s maximum frequency?

10 October 2018 Telecoms, Datacoms, Wireless, IoT

Coaxial cable is the most commonly used transmission line for RF and microwave applications, because it provides reliable transmission with the benefits of wide bandwidth, low loss and high isolation. Major manufacturers of transmitting equipment such as radio and TV, radar, GPS, emergency management systems, air and marine craft, use coaxial cables.

The uses of coaxial cable apply to any system in which signal loss and attenuation must be minimised. Unlike waveguides, coaxial cable has no lower cutoff frequency, but what about its upper frequency?

Frequency

Like other parts of the electromagnetic spectrum, radio frequency (RF) is identified by its frequency in Hertz (Hz) or wavelength in metres. An inverse relationship exists between these two concepts such that as frequency increases, wavelength decreases, with the reverse being true as well.

The strength of a radio frequency signal is measured in Watts. A frequency band refers to a designated section of the RF spectrum like, for example, the AM and FM band used in radio broadcasting and, within this band, a section of spectrum is referred to as bandwidth.

Frequency is identified as the number of reverses or cycles in the flow of alternating current (AC) per second. For example, broadcast stations operate at frequencies of thousands of cycles per second and their frequencies are called kilohertz (kHz); higher frequencies are in millions of cycles per second and are called megahertz (MHz).

Radio frequency is the frequency band which is primarily used for transmission of radio and television signals, and ranges from 3 MHz to 3 GHz. Microwave frequencies range from ultra high frequency (UHF) 0,3 – 3 GHz, super high frequency (SHF) 3 – 30 GHz, to extremely high frequency (EHF) 30 – 300 GHz.

Maximum frequency

With some exceptions, most coaxial cables do not have an actual cutoff in terms of a specific stop-band frequency but instead use the term cutoff to refer to the highest frequency tested by the manufacturer, or when the frequency reaches a point where the coaxial cable becomes a waveguide and other modes, aside from the transverse-electromagnetic mode (TEM), occur.

Hence, a coaxial cable’s cutoff frequency could be where the cable remains within specification, or within a reasonable margin to avoid transverse-magnetic (TM) or transverse-electric (TE) propagation modes. Though coaxial cables can still carry signals with frequencies above the TEM mode cutoff, TM or TE transmission modes are much less efficient and not desirable for most applications.

Cutoff frequency and skin depth

Two important concepts of note when discussing frequency in coaxial cable are skin depth and cutoff frequency. Coaxial cable is made up of two conductors, an inner pin, and an outer grounded shield.

Skin effect occurs along the coaxial line when high frequencies cause electrons to migrate towards the surface of the conductors. This skin effect leads to increased attenuation and dielectric heating, and causes greater resistive loss along the coaxial line. To reduce the losses from the skin effect, a larger diameter coaxial cable can be used, but increasing the coaxial cable’s dimensions will reduce the maximum frequency the cable can transmit.

The problem is that when the size of the wavelength of electromagnetic energy exceeds the transverse electromagnetic (TEM) mode and begins to ‘bounce’ along the coaxial line as a transverse electric 11 mode (TE11), the coaxial cable cutoff frequency is created. Because the new frequency mode travels at a different velocity than the TEM mode, it creates reflections and interference to the TEM mode signals travelling through the coaxial cable. This is referred to as the upper frequency limit or cutoff frequency.

A cutoff frequency is a point at which energy flowing through the EM system begins to be reduced, by attenuation or reflection, rather than passing through the line. TE and TM modes are the lowest-order mode propagating on a coaxial line. In TEM mode, both the electric field and the magnetic field are transverse to the direction of travel and the desired TEM mode is allowed to propagate at all frequencies. Higher modes are excited at frequencies above the cutoff frequency when the first higher-order mode, called TE11, is also allowed to propagate.

To be sure that only one mode propagates for a clear signal, the signals need to be below the cutoff frequency. Reducing the size of the coaxial cable increases the cutoff frequency. Coaxial cables and coaxial connectors can reach into the millimetre-wave frequencies but as the physical dimensions shrink, power handling capabilities are reduced and losses increase.

For more information contact Andrew Hutton, RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SMT-mountable card connectors
Telecoms, Datacoms, Wireless, IoT
Würth Elektronik introduces four new SMT-mountable Nano SIM and microSD card connectors and expands its range with solutions for the smallest packages.

Read more...
Module for smart city and smart utility devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has launched the Quectel KCM0A5S, a high-performance Wi-SUN module designed for smart applications such as street lighting, precision agriculture, industrial IoT, smart meters and smart cities.

Read more...
Ultra-low-power wireless module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WBA5MMG from STMicroelectronics is an ultra-low-power, small form factor, certified 2,4 GHz wireless module that supports Bluetooth LE, Zigbee 3.0, OpenThread, and IEEE 802.15.4 proprietary protocols.

Read more...
Energy harvesting and Matter for smarter homes
RF Design Power Electronics / Power Management
Qorvo’s collaboration with e-peas on the Matter Enabled Light Switch marks another significant step in advancing Matter adoption across the IoT industry.

Read more...
Quectel partners with GEODNET
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has partnered with GEODNET to deliver Quectel’s Real-Time Kinematic (RTK) correction services, enabling high-precision positioning for IoT applications.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Futureproofing IoT connectivity
SIMcontrol Telecoms, Datacoms, Wireless, IoT
A managed private APN assigns every device to an isolated carrier slice, producing a single ingress to the enterprise network, with traffic bypassing shared internet paths and reducing exposure.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved