Telecoms, Datacoms, Wireless, IoT


Differential signalling to clock faster, better control EMI, and accomplish long-haul serial transmission

10 April 2002 Telecoms, Datacoms, Wireless, IoT

As transmission speeds increase (10 gigabit SERDES, gigabit Ethernet, etc) there is greater need for high-speed serial transmission methods - usually Differential Signals (DS) for many companies. However, one must be aware that it has design restrictions that must be adhered to for successful design.

Here we look at the main requirements for DS, ie overcoming differential unbalance, controlling crosstalk, and providing the correct PCB layout.

Figure 1. The ideal DS transmission
Figure 1. The ideal DS transmission

Differential unbalance

The ideal DS transmission is seen in Figure 1. If the two pathways are the same electrical length (EL), the return currents cancel. What would happen if they are not the same EL? The unbalance fraction is defined in Figure 1. When one edge arrives before the other, the return currents will not cancel until the second edge arrives. During this time, two detrimental effects will occur, a reflection on the line of the first arriving signal and crosstalk between the lines. Therefore, the layout personnel must be cognisant of these scenarios:

1. Propagation delay - (about 140 ps/in. outer layer, 180 ps/in. inner layer)

2. Vias - Each time a trace is disrupted by a via, the inductance of the total path is increased, thereby changing the EL.

3. Keep always - If one trace has to deviate around a pin, via, anti-pad, etc, the EL will be affected.

Figure 2. An example of noise (crosstalk) coupling into a differential pair
Figure 2. An example of noise (crosstalk) coupling into a differential pair

Crosstalk

Figure 2 defines an example of noise (crosstalk) coupling into a differential pair. Now, if the noise is only coupled to one and not the other, the receiver output data is useless.

Differential signals use two lines driven with complementary waveforms. A virtue of differential signals is that most noise sources couple roughly the same noise onto both lines. The differential receiver is designed to ignore signal components that are common to both lines (the common mode) while responding to the difference between the two lines (the differential mode), rejecting the coupled noise. A related benefit of differential signals is that the electromagnetic interference (EMI) generated by each line in the differential pair is largely cancelled by the other line.

PCB layout

There are three methods for laying out differential pairs: asymmetric; dual (broadside); side-by-side (edge).

Dual is very hard to accomplish due to accuracy of lamination process (x, y, and O errors among layers). The tradeoffs between dual and edge are:

* Side-by-side routing distances dual-distance and via length's electrical length.

* Three layer versus two layer lamination accuracy.

* Etching on 2 Cu planes versus 1 Cu plane.

Most companies will design using on-the-edge layout with the two sheets of Cu being ground planes. A major key to successful DS is careful planning of layout for EL and signals that are protected by the ground layers.

Robert Hanson will be delivering high-speed digital design seminars in South Africa during June. Contact [email protected], for further details.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wi-Fi 6/BLE module enables rapid development
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Telit Cinterion has announced the WE310K6, a fully integrated, low-power module featuring dual-band, dual-stream Wi-Fi 6, and dual-mode Bluetooth/BLE.

Read more...
Low phase noise amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The MAAL-011158 from Macom is an easy-to-use low-phase noise amplifier that provides 12 dB of gain in a 32-lead QFN plastic package.

Read more...
Webinar: Enabling the digital transformation of IIoT with Bluetooth
Telecoms, Datacoms, Wireless, IoT
Key industrial use cases for Bluetooth will be reviewed, including the main performance requirements for Bluetooth in industrial applications, and the technical features available.

Read more...
Full sensor to cloud solution
CST Electronics Telecoms, Datacoms, Wireless, IoT
NeoCortec has demonstrated the seamless and rapid development of full sensor-to-cloud solutions using NeoMesh Click boards from MikroE and the IoTConnect cloud solution from Avnet.

Read more...
Long-range Wi-Fi HaLow module
TRX Electronics Telecoms, Datacoms, Wireless, IoT
One of Mouser’s newest products is the Morse Micro MM6108-MF08651-US Wi-Fi HaLow Module, which adheres to the IEEE 802.11ah standard.

Read more...
Quectel launches 3GPP NTN comms module
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the Quectel BG95-S5 3GPP non-terrestrial network (NTN) satellite communication module.

Read more...
SIMCom’s A7673x series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat.1 bis module based on the ASR1606 chipset, that supports wireless communication modes of LTE-FDD, with a maximum downlink rate of 10 Mbps and a maximum uplink rate of 5 Mbps.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Long-range connectivity module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Digi XBee XR 868 RF Modules support the deployment of long-range connectivity applications, and support point-to-point and mesh networking protocols.

Read more...
4G LTE-M/NB-IoT connectivity reference design
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Developed around the industry-leading Nordic nRF9160 module, the platform comes complete with a newly-developed LTE antenna, ATRIA, which is pre-certified to operate over the full LTE-M and NB-IoT bands.

Read more...