Power Electronics / Power Management


Powering DVB-T - the future

14 August 2002 Power Electronics / Power Management

DVB-T (digital video broadcast-terrestrial) decoders will provide a low-cost route into digital TV for the large number of consumers still relying on analog services. A compact, low-cost DVB-T system design with internal AC-DC power conversion can be realised using the features of an integrated power conversion IC from Power Integrations.

Although digital TV continues to offer exciting new features and user benefits, there still remain an estimated 100 million households in Europe that use analog services. To address this market potential, DVB-T-based systems have been developed to offer basic digital TV services. In contrast to the more conventional set-top box, these units are designed to provide basic digital TV through a traditional aerial, in a small, low-cost unit.

The TOPSwitch-GX

Due to limited space, the power architecture of the first generation decoders has been based on an external AC/DC adapter providing low voltage DC to the unit. This voltage is then converted to the required system rails with internal DC-DC circuitry. It has been estimated that this approach can cost up to 50% more than using a single internal offline converter. By using the advanced features of Power Integrations' TOPSwitch-GX, an offline power supply measuring just 80 x 35 x 16 mm has been realised, allowing for internal offline power conversion and system level cost reduction. A generic specification used is given in Table 1. The prototype has a continuous output power capability of 7,8 W in a 50°C ambient.

Table 1. Prototype specification for input voltage of 195–265 V a.c., 50 Hz
Table 1. Prototype specification for input voltage of 195–265 V a.c., 50 Hz

In addition to these general requirements, the prototype is designed to meet EN55022 EMI standards with a hard ground on the DVB box output, indicative of functional grounding through a SCART lead. With no hard grounding on the output, EN55022 can be met with a simple pi-filter at the input. In this situation, the common-mode choke and x-cap can be removed, giving further cost and size reduction.

System level benefits

A number of functions integrated into TOPSwitch-GX help to provide excellent system performance and protection without any additional components:

Soft-start reduces current and voltage stress on the primary clamp and output diodes during start-up. Furthermore, output overshoot and transformer saturation effects at start-up are minimised.

Frequency jitter modulates the switching frequency of 132 kHz by approximately ±4 kHz to reduce EMI levels.

Hysteretic thermal protection protects the power supply under output fault conditions. The device will stop switching if the die temperature reaches 140°C (typ). The device will begin to switch again when the die temperature falls below 70°C, ensuring a safe maximum average board temperature of around 105°C during faults.

Auto-restart limits the supply dissipation during a fault on the output such as a short circuit. When the fault is cleared, the supply will automatically resume normal operation.

EcoSmart technology reduces switching frequency under light load conditions to minimise the standby power consumption. On this prototype, a standby power of 330 mW has been achieved.

In addition to these on-chip benefits, the over-voltage protection feature of the chip has been implemented through a 2 MOhm programming resistance (R7 and R8 in Figure 2) from the multifunction pin to the high voltage DC bus. This feature immediately stops device switching when the bus voltage exceeds 450 V d.c. This function will allow the DC bus voltage to transiently reach 700 V without device failure. After the surge has cleared, the device will begin normal switching action again.

Figure 1. Multiple output 7 W DVB TOPSwitch-GX supply prototype
Figure 1. Multiple output 7 W DVB TOPSwitch-GX supply prototype

Prototype solution

Figure 1 shows the prototype solution centred on a DIL08 version of the TOP242, the smallest GX part. This part occupies minimal board area and requires no external heatsink. Figure 2 shows the prototype schematic. Components C10, L3, L2 and C15 provide filtering of both common-mode and differential mode noise, allowing the EMI regulations to be met even with a hard earth on the output ground. A low-cost RCD snubber has been used for primary side voltage clamping. In order to simplify transformer construction, the 2,5 V output is taken from the 3,3 V line. This could be implemented with an LDO regulator, although a 1N5400 diode was found to provide an adequate voltage drop in the prototype. L4, C12, L1 and C3 form LC post filters on the logic and RF power outputs to give very low noise and ripple. Feedback is provided via a PC817 opto-isolator with an LM317L used as a voltage reference.

Figure 2. Multiple output 7 W DVB TOPSwitch-GX supply prototype
Figure 2. Multiple output 7 W DVB TOPSwitch-GX supply prototype

Transformer design

The transformer is based on the EF16 core with triple insulated wires for the secondaries. The secondaries are AC stacked to provide good cross-regulation and to minimise the number of pins required on the bobbin. A triple insulated wire design (TIW) has been used to maximise winding width and improve coupling. The winding details are given here:

Primary: 68 turns (930 µH)

Bias: 9 turns

S1: 2 turns

S2: 2 turns in addition to S1

S3: 14 turns in addition to S2

Airgap: 0,1 mm

The bias winding is positioned between primary and secondary to provide an additional shielding function.

Prototype performance

Performance of the prototype solution was measured in a lab ambient of 28°C with 50 Hz mains from (195 to 265) V r.m.s. The results are given in Figure 3.

Figure 3. Measured prototype performance
Figure 3. Measured prototype performance

Conclusion

DVB-T technology will provide a low-cost route into digital TV for the high number of consumers still reliant on analog TV transmissions. The restricted size of the DVB-T boxes necessitates a highly integrated solution both for the main decoder system and the power provision circuitry. The TOPSwitch-GX based prototype power supply presented offers a high level of system integration and excellent performance with a board area of only 80 x 35 x 16 mm. With the cost of an external supply and internal DC-DC circuitry estimated at 50% higher than a single integrated internal solution, the cost saving over the predicted 100 million DVB-T decoders is highly significant.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Miniature 4,4 A boost converter
28 October 2020, iCorp Technologies , Power Electronics / Power Management
The SGM6623 from SG Micro is a general-purpose, miniature boost DC-DC switching regulator with high efficiency for battery backup and standby power systems. The acceptable input voltage range is between ...

Read more...
Double the power output from new Tadiran battery
25 November 2020, Altron Arrow , Power Electronics / Power Management
Tadiran has developed the latest in its PulsesPlus HLC battery range, doubling the power output of its previous offering. Recently the company launched the C-type HLC which represented a huge improvement ...

Read more...
DIN-rail power supplies for harsh conditions
25 November 2020 , Power Electronics / Power Management
Available from Traco Power is a dedicated series of DIN-rail power solutions for harsh industrial applications. The TSP series’ high immunity against electrical disturbances and rugged metal casing ...

Read more...
SiC diodes for electric vehicles
25 November 2020, Altron Arrow , Power Electronics / Power Management
As vehicle electrification continues rapid growth worldwide, innovative power technologies such as silicon carbide (SiC) are required for high-voltage automotive systems ranging from motors to on-board ...

Read more...
Single-cell battery charger
25 November 2020, iCorp Technologies , Power Electronics / Power Management
The SGM41511 is a battery charger and system power path management device with integrated converter and power switches for use with single-cell Li-ion or Li-polymer batteries. This highly integrated 3 A ...

Read more...
Locally designed gang battery charger
25 November 2020, Seven Labs Technology , Power Electronics / Power Management
Made by Seven Labs Technology, the JuiceBar has 10 individually configurable chargers, each of which can be configured to charge the battery with a charge current of up to 2 A. What really makes the JuiceBar ...

Read more...
Regenerative power system integrating two instruments
25 November 2020, Conical Technologies , Power Electronics / Power Management
The IT-M3600 regenerative power system from ITECH integrates two instruments in one, those being a bidirectional power supply and a regenerative electronic load. When used as a load, its energy recovery ...

Read more...
Battery manufacturer enters South African market
25 November 2020 , Power Electronics / Power Management
Energon, a leading battery manufacturer based in Russia, has expanded its global presence to include new subsidiaries in Turkey (as the centre of a new cluster for eastern Europe, the Middle East and ...

Read more...
Maintaining backup battery systems for maximum usage and reliability
30 September 2020, Comtest , Power Electronics / Power Management
Standby battery backup systems play a critical role in keeping essential operations functional in the event of a utility outage. Facilities like data centres, hospitals, airports, utilities, oil and gas ...

Read more...
Double the power output from new Tadiran battery
30 September 2020, Altron Arrow , Power Electronics / Power Management
Tadiran has developed the latest in its PulsesPlus HLC battery range, doubling the power output of its previous offering. Recently the company launched the C-type HLC which represented a huge improvement ...

Read more...