News


Next up for wireless communication: the computer chip itself

14 August 2002 News

The silicon chip may soon join the growing list of devices to go wireless, a development that could speed computers and lead to a new breed of useful products.

A team of researchers in the US, headed by a University of Florida electrical engineer has demonstrated the first wireless communication system built entirely on a computer chip. Composed of a miniature radio transmitter and antenna, the tiny system broadcasts information across a fingernail-sized chip, according to an article in the May issue of Journal of Solid State Circuits.

"Antennas are going to get installed onto chips one way or another - it is inevitable," said Kenneth O, a UF professor of electrical and computer engineering and the lead researcher. "We are really the first group that is making the technology happen.

"As chips increase in size and complexity, transmitting information to all parts of the chip simultaneously through the many tiny wires embedded in the silicon platform becomes more difficult," said O. Chip-based wireless radios could bypass these wires, ensuring continued performance improvements in the larger chips. These tiny radios-on-a-chip also could make possible tiny, inexpensive microphones, motion detectors and other devices.

The fastest chips on the market, used in the Pentium 4 and other high-end processors - now operate at a speed of 2 GHz, meaning they perform 2 billion calculations per second. Manufacturers are rapidly developing techniques to raise the speed, with chips that process information as fast as 20 GHz, or 20 billion calculations per second, already achieved on an experimental basis. Many experts believe even 100 GHz chips are feasible.

The increase in speed will be accompanied by an increase in chip size. While today's average chip is about 1 cm2, the faster chips anticipated in the next two decades are expected to be as large as 2 or 3 cm on each side. The larger the chip, the harder it is to send information to all of its regions simultaneously because the distances between the millions of tiny circuits within the chip become more varied. This can impact the chip's performance when the delay affects distribution of the so-called 'clock signal', a basic signal that synchronises the many different information-processing tasks assigned to the chip. For optimum performance, this signal must reach all regions of the chip at essentially the same time.

In the May article, O and his colleagues report broadcasting the clock signal from a tiny transmitter on one side of a chip a distance of 5,6 mm, across the chip to a tiny receiver at the other end, avoiding all wires within the chip itself. "Instead of running the signal through the wires, what we did was broadcast and receive the signal," O said.

The potential applications for chip-based radios go beyond maintaining the performance of larger chips. In general, the availability of such chips could lead to a chip-to-chip wireless communication infrastructure, seamlessly and constantly connecting desktops, handheld computers, mobile phones and other portable devices. In other potential applications, the military has expressed interest in pairing wireless chips with tiny sensors such as microphones. The idea is to drop thousands or even hundreds of thousands of these devices in a region to eavesdrop over a wide area. The chips would form a listening network by themselves, and the military monitor the system as needed.

On the civilian side, scientists and engineers have theorised the wireless chips could be paired with motion detectors and implanted in the walls of buildings. If a building collapsed due to an earthquake, for instance, the network of chips could broadcast information about movement to rescuers in search of victims.

For more information: University of Florida, www.ufl.edu





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the Editor's desk: Growth through inclusivity
Technews Publishing News
As the engineering fields in South Africa continue to make progress toward gender equality, we are finally starting to see the presence and contribution of women in engineering and industrial roles.

Read more...
KITE 2025 proves its value
News
The KwaZulu-Natal Industrial Technology Exhibition (KITE) 2025 confirmed its place as KwaZulu-Natal’s must-attend industrial event, drawing thousands of industry professionals.

Read more...
Otto Wireless Solutions announces promotion of Miyelani Kubayi to technical director
Otto Wireless Solutions News
Otto Wireless Solutions is proud to announce the promotion of Miyelani Kubayi to the position of technical director, effective 1 August 2025.

Read more...
DMASS experiences continued slowdown
News
The European electronic components distribution market continued its downward trajectory in the second quarter of 2025, according to new figures released by DMASS.

Read more...
World-first zero second grid-to-backup power switch
News
JSE-listed cable manufacturer, South Ocean Electric Wire, has completed a solar installation it says marks a global first: a seamless switch from grid to backup power in zero seconds.

Read more...

News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
Cobots for opto production line
News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved