Power Electronics / Power Management


Generating very low voltages with standard regulators

30 September 2020 Power Electronics / Power Management

Question:

What is a good solution for generating a tiny DC supply voltage of a few hundred millivolts?

Answer:

All that is needed is a clean additional positive voltage to hook up to the feedback resistor of a DC-to-DC converter. Supply voltages for electronic components have been decreasing steadily over the last few years. The reason for this is the decreasing size of the geometrical structures in digital circuits such as microcontrollers, CPUs, DSPs and others. There are also applications in the measurement field that require low supply voltages.

For many years, linear regulators and switching regulators had a feedback voltage of approximately 1,2 V. This voltage was generated with a band gap circuit in a DC-to-DC converter IC, which determined the lowest voltage that could be set with an external resistive divider. By now, most modern voltage regulator ICs can generate output voltages of 0,8 V, 0,6 V or even 0,5 V. The internal voltage reference is designed in such a way that lower voltages are possible.


Figure 1. An LTC3822 DC-to-DC converter for generating low output voltages of 0,6 V or higher.

Figure 1 shows such a switching regulator, the LTC3822, which generates a feedback voltage of 0,6 V with a 0,6 V voltage reference.

However, if a supply voltage of less than 0,6 V is required, the circuit in Figure 1 cannot be used without further adjustments. With a trick, you can make a switching or linear regulator also generate lower voltages than the feedback voltage. This can be achieved by using circuits like the one shown in Figure 2.

It requires an additional positive supply voltage to which the resistive divider is connected for adjustment of the output voltage. This voltage can come from a low dropout (LDO) regulator or a voltage reference. The resistive divider thus forms a voltage divider in which the current flow IFB flows in a direction opposite to the normal case in Figure 1. In Figure 2, the current flows from the external reference voltage through the resistive divider to the output voltage.

Equation 1 shows the relationship between the feedback voltage of the IC (VFB), the desired output voltage (VOUT), the additional positive dc bias voltage (VOFFSET) and the resistors of the resistive divider R1 and R2.


The recommended values for the resistive divider are a total value of R1 plus R2 of between 100 kΩ and 500 kΩ. This keeps the bias current low enough in regard to power efficiency but high enough to prevent excessive noise from coupling into the sensitive feedback path.

This concept generally works well for generating voltages below the specified minimum voltage of a switching regulator or linear regulator. However, a few things should be considered. The additional voltage reference should be up and running before the DC-to-DC converter is switched on. If this auxiliary voltage is at 0 V or has a high impedance, the DC-to-DC converter might generate an excessively high voltage and damage the load circuit.

In the worst case scenario, in which the switching regulator is not yet switched on but the auxiliary voltage has already been applied, the current IFB through the resistive divider will charge the output capacitor to voltages above the set voltage. This can happen when the load has a very high impedance. It may be necessary to install a minimum load to avoid this.


Figure 2. Circuit of Figure 1 modified to generate output voltages of less than 0,6 V.

The accuracy of the auxiliary voltage at the resistive divider (1 V in Figure 2) contributes directly to the accuracy of the generated supply voltage. Thus, an especially clean voltage with low ripple should be used.

Additionally, not every voltage converter is suitable for this type of operation. For example, the measuring range of the current sense amplifier in a DC-to-DC converter might only provide for an operating range at higher voltages. It should also be noted that generating very low voltages at quite high input voltages requires a low duty cycle. Here, it might be helpful to choose a switching regulator IC with a short minimum on-time and to operate it at a low switching frequency.


Figure 3. A simulation tool such as LTspice from Analog Devices can be used for initial testing of the circuit.

For operating a linear regulator or switching regulator with lower output voltages than intended by the IC manufacturer, an initial check using a simulation tool such as LTspice from Analog Devices is useful. Figure 3 shows an LTC3822 circuit with an additional voltage source as a bias for the feedback path. In this circuit, an output voltage of 200 mV is generated. According to the data sheet, the LTC3822 is suitable for generating minimum output voltages of 0,6 V. In a circuit, the auxiliary voltage, voltage source V2 in Figure 3, could be implemented with an LDO regulator or a voltage reference. With the trick described here and thorough testing of the circuit, even lower output voltages can be generated.

About the author

Frederik Dostal studied microelectronics at the University of Erlangen in Germany. Starting work in the power management business in 2001, he has been active in various applications positions including four years in Phoenix, Arizona, where he worked on switch-mode power supplies. He joined Analog Devices in 2009 and works as a field applications engineer for power management at Analog Devices in München.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The importance of power integrity
Spectrum Concepts Power Electronics / Power Management
[Sponsored] Behind every high-speed system lies the need for power integrity. Without it, even the cleanest signal paths become compromised.

Read more...
Precise multi-vital sign monitoring
Future Electronics Power Electronics / Power Management
The AS7058 by ams OSRAM is an integrated multi-vital sign monitoring device, which provides a complete photoplethysmogram, electrocardiogram, body impedance sensor, and electrodermal activity sensor.

Read more...
Automotive battery diagnostics tester
Comtest Power Electronics / Power Management
Midtronics’ MVT handheld battery tester is a revolutionary tool, powered by MDX-AI, which is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Ultra-low power MEMS accelerometer
Altron Arrow Analogue, Mixed Signal, LSI
Analog Devices’ ADXL366 is an ultra-low power, 3-axis MEMS accelerometer that consumes only 0,96 µA at a 100 Hz output data rate and 191 nA when in motion-triggered wake-up mode.

Read more...
Advanced 3-phase controllers
Future Electronics Power Electronics / Power Management
The STSPIN32G0 by STMicroelectronics is a family of highly integrated system-in-package providing solution suitable for driving three-phase brushless motors.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
Reliable power for demanding applications
Conical Technologies Power Electronics / Power Management
The Mibbo Power MTR480 three-phase DIN-rail power supply is engineered to meet stringent industrial automation requirements, offering dependable performance in environments where downtime is not an option.

Read more...
MCU platform for battery-powered devices
Altron Arrow DSP, Micros & Memory
The MCX W23 is a new dedicated wireless MCU platform from NXP for battery-powered sensing devices.

Read more...
Precision MEMS IMU modules
Altron Arrow Analogue, Mixed Signal, LSI
The ADIS16575/ADIS16576/ADIS16577 from Analog Devices are precision, MEMS IMUs that includes a triaxial gyroscope and a triaxial accelerometer.

Read more...
Powering performance and precision
Future Electronics Power Electronics / Power Management
onsemi’s innovative T10 series MOSFETs, available in 40 V and 80 V versions, are designed for high-efficiency, fast-switching, and power-dense applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved