News


Better than Moore: A new way to measure semiconductor progress

25 November 2020 News

One of the most famous maxims in technology is, of course, Moore’s Law. For more than 55 years, the ‘Law’ has described and predicted the shrinkage of transistors, as denoted by a set of roughly biennial waypoints called technology nodes. An article published on IEEE Spectrum (https://spectrum.ieee.org/semiconductors/devices/a-better-way-to-measure-progress-in-semiconductors) explores the validity of Moore’s Law today. From the article:

“Like some physics-based doomsday clock, the node numbers have ticked down relentlessly over the decades as engineers managed to regularly double the number of transistors they could fit into the same patch of silicon. When Gordon Moore first pointed out the trend that carries his name, there was no such thing as a node, and only about 50 transistors could economically be integrated on an IC.

“But after decades of intense effort and hundreds of billions of dollars in investment, look how far we’ve come! If you’re fortunate enough to be reading this article on a high-end smartphone, the processor inside it was made using technology at what’s called the 7-nanometre node. That means that there are about 100 million transistors within a square millimetre of silicon. Processors fabricated at the 5-nm node are in production now, and industry leaders expect to be working on what might be called the 1-nm node inside of a decade.”

And then what?

“After all, 1 nm is scarcely the width of five silicon atoms. So you’d be excused for thinking that soon there will be no more Moore’s Law, that there will be no further jumps in processing power from semiconductor manufacturing advances, and that solid-state device engineering is a dead-end career path.

“You’d be wrong, though. The picture the semiconductor technology node system paints is false. Most of the critical features of a 7-nm transistor are actually considerably larger than 7 nm, and that disconnect between nomenclature and physical reality has been the case for about two decades. That’s no secret, of course, but it does have some really unfortunate consequences.

“One is that the continuing focus on ‘nodes’ obscures the fact that there are actually achievable ways semiconductor technology will continue to drive computing forward even after there is no more squeezing to be accomplished with CMOS transistor geometry. Another is that the continuing node-centric view of semiconductor progress fails to point the way forward in the industry-galvanising way that it used to. And, finally, it just rankles that so much stock is put into a number that is so fundamentally meaningless.

“Efforts to find a better way to mark the industry’s milestones are beginning to produce clearly better alternatives. But will experts in a notoriously competitive industry unite behind one of them? Let’s hope they do, so we can once again have an effective way of measuring advancement in one of the world’s largest, most important, and most dynamic industries.

“So, how did we get to a place where the progress of arguably the most important technology of the past hundred years appears, falsely, to have a natural endpoint? Since 1971, the year the Intel 4004 microprocessor was released, the linear dimensions of a MOS transistor have shrunk down by a factor of roughly 1000, and the number of transistors on a single chip has increased about 15 million-fold. The metrics used to gauge this phenomenal progress in integration density were primarily dimensions called the metal half-pitch and gate length. Conveniently, for a long time, they were just about the same number.

“Metal half-pitch is half the distance from the start of one metal interconnect to the start of the next on a chip. In the two-dimensional or ‘planar’ transistor design that dominated until this decade, gate length measured the space between the transistor’s source and drain electrodes. In that space sat the device’s gate stack, which controlled the flow of electrons between the source and drain. Historically, it was the most important dimension for determining transistor performance, because a shorter gate length suggested a faster-switching device.

“In the era when gate length and metal half-pitch were roughly equivalent, they came to represent the defining features of chip manufacturing technology, becoming the node number. These features on the chip were typically made 30 percent smaller with each generation. Such a reduction enables a doubling of transistor density, because reducing both the x and y dimensions of a rectangle by 30 percent means a halving in area.

“Using the gate length and half-pitch as the node number served its purpose all through the 1970s and ’80s, but in the mid-1990s, the two features began to uncouple. Seeking to continue historic gains in speed and device efficiency, chipmakers shrank the gate length more aggressively than other features of the device. For example, transistors made using the so-called 130-nm node actually had 70-nm gates. The result was the continuation of the Moore’s Law density-doubling pathway, but with a disproportionately shrinking gate length. Yet industry, for the most part, stuck to the cadence of the old node-naming convention.”

Read further in the expansive IEEE Spectrum article at https://spectrum.ieee.org/semiconductors/devices/a-better-way-to-measure-progress-in-semiconductors




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the Editor's desk: Growth through inclusivity
Technews Publishing News
As the engineering fields in South Africa continue to make progress toward gender equality, we are finally starting to see the presence and contribution of women in engineering and industrial roles.

Read more...
KITE 2025 proves its value
News
The KwaZulu-Natal Industrial Technology Exhibition (KITE) 2025 confirmed its place as KwaZulu-Natal’s must-attend industrial event, drawing thousands of industry professionals.

Read more...
Otto Wireless Solutions announces promotion of Miyelani Kubayi to technical director
Otto Wireless Solutions News
Otto Wireless Solutions is proud to announce the promotion of Miyelani Kubayi to the position of technical director, effective 1 August 2025.

Read more...
DMASS experiences continued slowdown
News
The European electronic components distribution market continued its downward trajectory in the second quarter of 2025, according to new figures released by DMASS.

Read more...
World-first zero second grid-to-backup power switch
News
JSE-listed cable manufacturer, South Ocean Electric Wire, has completed a solar installation it says marks a global first: a seamless switch from grid to backup power in zero seconds.

Read more...

News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
Cobots for opto production line
News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved