News


Better than Moore: A new way to measure semiconductor progress

25 November 2020 News

One of the most famous maxims in technology is, of course, Moore’s Law. For more than 55 years, the ‘Law’ has described and predicted the shrinkage of transistors, as denoted by a set of roughly biennial waypoints called technology nodes. An article published on IEEE Spectrum (https://spectrum.ieee.org/semiconductors/devices/a-better-way-to-measure-progress-in-semiconductors) explores the validity of Moore’s Law today. From the article:

“Like some physics-based doomsday clock, the node numbers have ticked down relentlessly over the decades as engineers managed to regularly double the number of transistors they could fit into the same patch of silicon. When Gordon Moore first pointed out the trend that carries his name, there was no such thing as a node, and only about 50 transistors could economically be integrated on an IC.

“But after decades of intense effort and hundreds of billions of dollars in investment, look how far we’ve come! If you’re fortunate enough to be reading this article on a high-end smartphone, the processor inside it was made using technology at what’s called the 7-nanometre node. That means that there are about 100 million transistors within a square millimetre of silicon. Processors fabricated at the 5-nm node are in production now, and industry leaders expect to be working on what might be called the 1-nm node inside of a decade.”

And then what?

“After all, 1 nm is scarcely the width of five silicon atoms. So you’d be excused for thinking that soon there will be no more Moore’s Law, that there will be no further jumps in processing power from semiconductor manufacturing advances, and that solid-state device engineering is a dead-end career path.

“You’d be wrong, though. The picture the semiconductor technology node system paints is false. Most of the critical features of a 7-nm transistor are actually considerably larger than 7 nm, and that disconnect between nomenclature and physical reality has been the case for about two decades. That’s no secret, of course, but it does have some really unfortunate consequences.

“One is that the continuing focus on ‘nodes’ obscures the fact that there are actually achievable ways semiconductor technology will continue to drive computing forward even after there is no more squeezing to be accomplished with CMOS transistor geometry. Another is that the continuing node-centric view of semiconductor progress fails to point the way forward in the industry-galvanising way that it used to. And, finally, it just rankles that so much stock is put into a number that is so fundamentally meaningless.

“Efforts to find a better way to mark the industry’s milestones are beginning to produce clearly better alternatives. But will experts in a notoriously competitive industry unite behind one of them? Let’s hope they do, so we can once again have an effective way of measuring advancement in one of the world’s largest, most important, and most dynamic industries.

“So, how did we get to a place where the progress of arguably the most important technology of the past hundred years appears, falsely, to have a natural endpoint? Since 1971, the year the Intel 4004 microprocessor was released, the linear dimensions of a MOS transistor have shrunk down by a factor of roughly 1000, and the number of transistors on a single chip has increased about 15 million-fold. The metrics used to gauge this phenomenal progress in integration density were primarily dimensions called the metal half-pitch and gate length. Conveniently, for a long time, they were just about the same number.

“Metal half-pitch is half the distance from the start of one metal interconnect to the start of the next on a chip. In the two-dimensional or ‘planar’ transistor design that dominated until this decade, gate length measured the space between the transistor’s source and drain electrodes. In that space sat the device’s gate stack, which controlled the flow of electrons between the source and drain. Historically, it was the most important dimension for determining transistor performance, because a shorter gate length suggested a faster-switching device.

“In the era when gate length and metal half-pitch were roughly equivalent, they came to represent the defining features of chip manufacturing technology, becoming the node number. These features on the chip were typically made 30 percent smaller with each generation. Such a reduction enables a doubling of transistor density, because reducing both the x and y dimensions of a rectangle by 30 percent means a halving in area.

“Using the gate length and half-pitch as the node number served its purpose all through the 1970s and ’80s, but in the mid-1990s, the two features began to uncouple. Seeking to continue historic gains in speed and device efficiency, chipmakers shrank the gate length more aggressively than other features of the device. For example, transistors made using the so-called 130-nm node actually had 70-nm gates. The result was the continuation of the Moore’s Law density-doubling pathway, but with a disproportionately shrinking gate length. Yet industry, for the most part, stuck to the cadence of the old node-naming convention.”

Read further in the expansive IEEE Spectrum article at https://spectrum.ieee.org/semiconductors/devices/a-better-way-to-measure-progress-in-semiconductors




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor’s desk: Windows 10’s end of support arrives bringing industrial risks
Technews Publishing News
By the time you read this column, support for non-LTSC editions of Windows 10 will have ended, officially having their last day on 14 October 2025. This means no more security patches, feature updates, ...

Read more...
Electronic News Digest
News
A brief synopsis of current global news relating to the electronic engineering fields with regards to company finances, general company news, and engineering technologies.

Read more...
Correction: Marijana Abt, Rebound Electronics
News
      In the August issue of Dataweek magazine, the article titled ‘Celebrating innovation, leadership, and the next generation’ featured Marijana Abt, senior account manager at Rebound Electronics. Owing ...

Read more...
Trasna and RF Design announce distribution agreement
RF Design News
Trasna and RF Design have announced a strategic distribution agreement for cellular IoT solutions which will ensure seamless availability of Trasna’s cellular connectivity solutions.

Read more...
Local partnership puts demand-side management to work in South Africa
News
Sensor Networks has partnered with European demand-side management specialist ThermoVault to bring advanced load-shifting capabilities to one of the country’s biggest energy consumers: the household geyser.

Read more...
Hisense SA launches year-long learnership programme for youth
News
Hisense SA’s manufacturing plant in Atlantis recently welcomed 100 young people from the local community, to embark on a year-long learnership and skills development programme.

Read more...
Comtest hosts channel partners
Comtest News
Comtest, together with FLUKE, recently set the stage for an unforgettable afternoon as they welcomed over 80 Channel Partners to their annual celebration of excellence.

Read more...
RS South Africa and Qhubeka empower learners through the gift of mobility
RS South Africa News
Through its bicycle donation initiative, 354 bicycles have been distributed to date, empowering students to access education more easily by reducing the physical and economic barriers posed by long daily commutes.

Read more...
Deca and SST announce strategic collaboration
News
The collaboration provides customers with a modular, memory-centric foundation for advanced multi-die architectures.

Read more...
Specialised Exhibitions transitions to new name: Montgomery Group Africa
News
As part of a strategic move to streamline operations, strengthen regional alignment, and support long-term growth, Specialised Exhibitions has transitioned to a new name: Montgomery Group Africa.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved