News


Structural battery breakthrough towards ’massless’ energy storage

26 May 2021 News

Chalmers University of Technology researchers have produced a structural battery that performs 10 times better than all previous versions. It contains carbon fibre that serves simultaneously as an electrode, conductor and load-bearing material. Their latest research breakthrough paves the way for essentially ’massless’ energy storage in vehicles and other technology.

The batteries in today’s electric cars constitute a large part of the vehicles’ weight, without fulfilling any load-bearing function. A structural battery, on the other hand, is one that works as both a power source and as part of the structure – for example, in a car body. This is termed ‘massless’ energy storage, because in essence the battery’s weight vanishes when it becomes part of the load-bearing structure. Calculations show that this type of multifunctional battery could greatly reduce the weight of an electric vehicle.


Dr Johanna Xu with a newly manufactured structural battery cell in Chalmers’ composite lab, which she shows to Leif Asp. The cell consists of a carbon fibre electrode and a lithium iron phosphate electrode separated by a fibreglass fabric, all impregnated with a structural battery electrolyte for combined mechanical and electrical function. (Image copyright Marcus Folino)

The development of structural batteries at Chalmers University of Technology has proceeded through many years of research, including previous discoveries involving certain types of carbon fibre. In addition to being stiff and strong, they also have a good ability to store electrical energy chemically. This work was named by Physics World as one of 2018’s 10 biggest scientific breakthroughs.

The first attempt to make a structural battery was made as early as 2007, but it has so far proven difficult to manufacture batteries with both good electrical and mechanical properties. But now the development has taken a real step forward, with researchers from Chalmers, in collaboration with KTH Royal Institute of Technology in Stockholm, presenting a structural battery with properties that far exceed anything yet seen, in terms of electrical energy storage, stiffness and strength. Its multifunctional performance is 10 times higher than previous structural battery prototypes.

The battery has an energy density of 24 Wh/kg, meaning approximately 20% capacity compared to comparable lithium-ion batteries currently available. But since the weight of the vehicle can be greatly reduced, less energy will be required to drive an electric car, for example, and lower energy density also results in increased safety. And with a stiffness of 25 GPa, the structural battery can compete with many other commonly used construction materials.

“Previous attempts to make structural batteries have resulted in cells with either good mechanical properties, or good electrical properties. But here, using carbon fibre, we have succeeded in designing a structural battery with both competitive energy storage capacity and rigidity,” explains Leif Asp, professor at Chalmers and leader of the project.

Super-light electric bikes and consumer electronics could soon be a reality

The new battery has a negative electrode made of carbon fibre and a positive electrode made of a lithium iron phosphate-coated aluminium foil. They are separated by a fibreglass fabric in an electrolyte matrix. Despite their success in creating a structural battery 10 times better than all previous ones, the researchers did not choose the materials to try and break records – rather, they wanted to investigate and understand the effects of material architecture and separator thickness.

Now, a new project, financed by the Swedish National Space Agency, is underway, where the performance of the structural battery will be increased yet further. The aluminium foil will be replaced with carbon fibre as a load-bearing material in the positive electrode, providing both increased stiffness and energy density. The fibreglass separator will be replaced with an ultra-thin variant, which will give a much greater effect – as well as faster charging cycles. The new project is expected to be completed within two years.

Leif Asp, who is leading this project too, estimates that such a battery could reach an energy density of 75 Wh/kg and a stiffness of 75 GPa. This would make the battery about as strong as aluminium, but with a comparatively much lower weight. “The next-generation structural battery has fantastic potential. If you look at consumer technology, it could be quite possible within a few years to manufacture smartphones, laptops or electric bicycles that weigh half as much as today and are much more compact,” says Asp.

And in the longer term, it is absolutely conceivable that electric cars, electric planes and satellites will be designed with and powered by structural batteries, Asp continues: “We are really only limited by our imaginations here. We have received a lot of attention from many different types of companies in connection with the publication of our scientific articles in the field. There is understandably a great amount of interest in these lightweight, multifunctional materials.”

Funding for the research project has come from the European Commission’s research programme Clean Sky II, as well as the US Airforce.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Components distribution slowdown Q1 2025
News
European components distribution (DMASS) experienced a continued slowdown in the first quarter 2025.

Read more...
Semiconductor sales increase 17% YoY
News
The Semiconductor Industry Association (SIA) recently announced global semiconductor sales were $54,9 billion during the month of February 2025, an increase of 17,1% compared to the February 2024 total.

Read more...
Silicon Labs – Q1 results
News
Silicon Labs, a leading innovator in low-power wireless, recently reported financial results for the first quarter, which ended April 5, 2025.

Read more...
Strengthening industry through strategic partnerships at KITE 2025
Specialised Exhibitions News
The KwaZulu-Natal Industrial Technology Exhibition is not just an exhibition, it is a powerhouse of industry collaboration where visitors and exhibitors gain access to authoritative insights, technical expertise, and high-impact networking opportunities.

Read more...
Solar Youth Project calls on industry to step up
News
With the second cohort completed training and the first cohort returning for their final module, host companies are urgently needed to turn the training into a long-term opportunity.

Read more...
Conlog powers SA’s future with national smart meter rollout
News
Conlog recently secured the RT29-2024 contract from National Treasury, which is seen to be a major milestone towards modernising SA’s utility infrastructure.

Read more...
Zuchongzhi-3 sets new benchmark
News
This latest superconducting quantum computing prototype features 105 qubits and 182 couplers to operate at a speed 10¹5 times faster than the most powerful supercomputer currently available.

Read more...
Automatic device attestation certificate for Panasonic
News
DigiCert recently announced it has partnered with Panasonic Industry Europe to integrate DigiCert Device Trust Manager with Panasonic’s PAN-MaX intelligent manufacturing service for seamless Matter certification of interoperable smart home devices.

Read more...
From the editor's desk: Are we really being ripped off?
Technews Publishing News
To the surprise of many customers, installing solar panels does not always eliminate their utility bill – and in some cases, the power utility may impose additional charges on solar-powered homes.

Read more...
Winner of the Advanced Electronics Challenge
Avnet Silica News
Avnet Silica has named Hydronauten winner of the Advanced Electronics Challenge for breakthrough AI-driven vibration damping technology.

Read more...