Power Electronics / Power Management


Achieving higher-reliability isolation than traditional EMs can provide

31 August 2022 Power Electronics / Power Management

Relays have been used as switches since before the transistor was invented. The ability to safely control high-voltage systems from lower-voltage signals, as is the case in isolation resistance monitoring, is necessary for the development of many automotive systems. While the technology of electromechanical relays and contactors has improved over the years, it is still challenging for designers to achieve their goals of lifetime reliability and fast switching speeds, along with low noise, shock vibration and power consumption.

Solid-state relays (SSRs) exhibit performance and cost benefits and are rated for different levels of isolation. SSRs also possess advantages over alternative technologies such as electromechanical relays and solid-state photo-relays.

Traditional relay switching solutions

Electromechanical relays (EMRs) are common in high-voltage switching applications. EMRs employ the use of electromagnetic forces to mechanically switch contacts on and off. Given their mechanical nature, EMRs feature an incredibly low on-resistance; their contacts are essentially a metal-to-metal connection.

EMRs do have trade-offs, however, when it comes to switching speeds and reliability. Moving parts inside the relay are a limiting factor, and switching speed is typically in the 5 to 15 ms range. Over time and with use, an EMR can experience failures such as arcing, chattering and welding shut.

Unlike EMRs, photo-relays have no moving parts and provide a high isolation voltage. Photo-relays are an improvement over traditional EMRs; but they also have design considerations such as limitations on the achievable power transfer as well as deterioration of the internal LED. Additionally, photo-relays need an external current-limiting resistor and often use additional field-effect transistors (FETs) to manage the LED’s switched state.

Higher-reliability isolation using SSRs

Solid-state relays from TI are available as switches (with integrated FETs) or drivers for controlling external FETs. TI’s TPSI2140-Q1 isolated switch and TPSI3050-Q1 isolated driver feature higher reliability and longevity compared to EMRs, since they do not experience mechanical deterioration over time. SSRs thus enable a ten times higher lifetime reliability than traditional EMRs. These SSRs can also switch in the microsecond range, orders of magnitude faster than EMRs.

Since the TPSI3050-Q1 and TPSI2140-Q1 integrate power and signal transfer across a single isolation barrier, no secondary bias supply is necessary, making it possible to achieve a small solution size. Figure 1 illustrates the use of the TPSI2140-Q1 isolated switch in a high-voltage system, eliminating external components such as a bias supply and external control circuits.

These solid-state relays also offer advantages over traditional photo-relays and optocouplers. The TPSI2140-Q1 and TPSI3050-Q1 achieve better reliability over photo-relays because there is no LED degradation, and no external control circuits are necessary because the logic-level input can drive the system directly.

These solid-state relays provide the highest dielectric strength at the fastest speed, highest operating temperature and lowest system cost. They also enable more reliable switching in a smaller package.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ultra-low-power wireless module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WBA5MMG from STMicroelectronics is an ultra-low-power, small form factor, certified 2,4 GHz wireless module that supports Bluetooth LE, Zigbee 3.0, OpenThread, and IEEE 802.15.4 proprietary protocols.

Read more...
Powering Innovation eBook: Changing what’s possible
Power Electronics / Power Management
This exclusive read, entitled ‘Changing what’s Possible,’ delves into how power dense Vicor modules enable many world-changing innovations across various sectors.

Read more...
16-channel multicell battery monitor
Altron Arrow Power Electronics / Power Management
The ADBMS6830B is a multicell battery stack monitor that measures up to 16 series-connected battery cells with a lifetime total measurement error of less than 2 mV.

Read more...
Reliable redundancy with the Mibbo M3DN Series
Conical Technologies Power Electronics / Power Management
Designed for use with two parallel-connected power supplies, the M3DN Series allows for true redundancy, making it ideal for mission-critical applications.

Read more...
Automotive power-over-coax inductor
RS South Africa Power Electronics / Power Management
TDK has launched the ADL8030VA, a high-performance inductor designed specifically for power-over-coaxial applications.

Read more...
Rugged PSU for challenging conditions
Conical Technologies Power Electronics / Power Management
Built for rugged reliability, the Mibbo MFC Series delivers stable, efficient power in environments where moisture, dust, and temperature extremes are everyday challenges.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
15 W power module with wide input range
Brabek Power Electronics / Power Management
RECOM’s miniature power modules provide 15 W output and operate over a wide input range of 18-264 V AC or 18-375 V DC.

Read more...
Industrial-grade DIN rail PSU
Conical Technologies Power Electronics / Power Management
The Mibbo MTR960W is a reliable and cost-effective PSU option that delivers a solid 960 W of output power at 24?or 48 V DC.

Read more...
Energy harvesting and Matter for smarter homes
RF Design Power Electronics / Power Management
Qorvo’s collaboration with e-peas on the Matter Enabled Light Switch marks another significant step in advancing Matter adoption across the IoT industry.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved