Editor's Choice


Icorp of Things: a more connected world

31 August 2022 Editor's Choice Telecoms, Datacoms, Wireless, IoT

The main challenge that IoT networks have had to overcome in recent years is wireless data rates. As these technologies improve, so too will the aspects of IoT technology, including sensors, edge computing, wearables, smart homes, and more.

Recently, more infrastructure has been developed for newer connectivity types that make IoT solutions more feasible. These are connectivity technologies like 5G and Wi-Fi 6. iCorp Technologies offers products from Quectel and Espressif which cover these recent advancements.

For years, two different types of wireless technology have coexisted. Wi-Fi is a type of local area network (LAN) used primarily indoors – for example, inside a home or workplace. Cellular networks, like the 4G LTE networks used by major operators, are a type of wide area network (WAN) used both indoors and outdoors, generally over long distances.

Both 5G and Wi-Fi 6 are complementary technologies that provide higher speeds, lower latency, and increased capacity over their predecessors. But what is each technology best for?

5G networks will provide 50 times more speed, 10 times less latency, and 1000 times more capacity than 4G/LTE. This means that 5G will be able to connect more devices and transmit more data than ever before, delivering fast connectivity and significantly enhanced user experiences. As with LTE, mobile carriers offer subscriptions to their 5G network, which requires 5G-capable devices.

The Quectel RG520N is a series of 5G sub-6 GHz LGA modules optimised specifically for IoT and eMBB applications. Based on the 3GPP Release 16 specification, it supports both 5G NSA and SA modes with Option 3x/3a and Option 2 network architectures and is backwards compatible with 4G/3G networks. It is pin-to-pin compatible with Quectel’s 5G RG50xQ series and LTE-A Cat 12 EG512-EA.

The module can meet a variety of customer application demands for high speed, large capacity, low latency and high reliability. A rich set of Internet protocols, industry-standard interfaces (USB 2.0/3.0/3.1, PCIe 3.0/4.0, PCM, UART, etc.) and abundant functionalities (USB drivers for Windows 7/8/8.1/10/11, Linux and Android) allow the module to serve a wide range of IoT and eMBB applications such as business routers, home gateway, STB, industrial laptops, consumer laptops, industrial PDAs, rugged tablet PCs, and video security systems.

Quectel also offer an ultra-wide-band 5G/4G FPC antenna, the YF0020AA, that provides broad coverage from 600-6000 MHz whilst backward-compatible to support 3G/2G networks as well at Cat M and NB-IoT. Ground plane independent, it is designed for flexible mounting on the underside of any non-metallic housing with a cable and connector for easy installation.

Wi-Fi 6, based on the IEEE 802.11ax standard, will deliver four times higher capacity and 75% lower latency, offering nearly triple the speed of its predecessor, Wi-Fi 5. Anyone can operate a Wi-Fi network and most of us have one in our homes and offices, connected to broadband service. Wi-Fi 6 devices require a Wi-Fi 6-compliant access point to get the full speed, latency, and capacity improvements.

Espressif ‘s ESP32-C5 packs a dual-band Wi-Fi 6 radio, along with the 802.11b/g/n standard for backward compatibility. The Wi-Fi 6 support is optimised for IoT devices, as the SoC supports a 20 MHz bandwidth for the 802.11ax mode, and a 20/40 MHz bandwidth for the 802.11b/g/n mode.

The ESP32-C5 has a 32-bit, RISC-V, single-core processor which can clock up to 240 MHz. It has 400 kB SRAM, 384 kB of ROM, as well as working with external flash. It has more than 20 programmable GPIOs, while supporting all the commonly used peripheral and the best-in-class security features.

Wi-Fi and 5G offer complementary functionalities. Where the user experience is concerned, 5G and Wi-Fi 6 can both achieve gigabit speeds and low latency. Because Wi-Fi has a lower cost to deploy, maintain, and scale, especially where access points need to serve more users, it will continue to be the predominant technology for home and business environments. This provides great support for dozens of data-hungry devices, like PCs, tablets, smartphones, streaming devices, TV sets, and printers, which must all connect to the network. Thanks to its longer range, 5G will be used for mobile connections, like smartphones. It will also be used for connected cars, smart city deployments, and even for large manufacturing operations.

The two technologies handle network management differently. Wi-Fi uses unlicensed spectrum, so everyone in the neighbourhood can each have their own Wi-Fi network without getting a licence to use it. However, this can mean your Wi-Fi performance is impacted by how many neighbours are using the spectrum at the same time and on the same channel. When used in offices and other enterprise environments, Wi-Fi tends to be heavily managed to meet a desired performance goal.

5G and LTE networks typically are managed by operators and use a dedicated, licensed spectrum that requires subscription fees to access. As with LTE, 5G performance will depend on the signal strength – in other words, how close you are to a base station – and how many other people are using the same network.

Of course, there are exceptions to these generalisations and whether to use 5G or Wi-Fi 6 depends on the specific use case.

As Wi-Fi and cellular wireless technologies continue to evolve in parallel, the core networks that are the backbone for all Internet connectivity are transforming as well. This process is known as cloudification since it extends the use of data centre technologies from the cloud into the network. Cloudification lays the foundation for carriers to support the growing volumes of data and billions of connected nodes that enable new use cases.

Some of the most exciting applications for 5G and Wi-Fi 6 will involve the Internet of Things (IoT). Businesses can choose which wireless technology makes the most sense for their needs and still get the high capacity, fast speed, and low latency they need to ensure devices can share data quickly and more reliably.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Active event tracking using a novel new technique
Editor's Choice
SPAES (single photon active event sensor) 3D sensing, developed by VoxelSensors, is a breakthrough technology that solves current critical depth sensing performance limitations for robotics applications.

Read more...
ABB commits to a more inclusive future as it empowers women and youth in engineering
ABB South Africa Editor's Choice
Through structured development, inclusive hiring, and focused empowerment, ABB Electrification is shaping a more equitable and dynamic future for the engineering industry.

Read more...
Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
Unlocking the next frontier – women leading digital transformation in South Africa’s technology sector
Editor's Choice
As South Africa celebrates Women’s Month, it is an ideal time to reflect on the critical role women are playing in shaping the country’s technology sector.

Read more...
Isolated SMD DC-DC converters
iCorp Technologies Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
AsiaRF unveils full Wi-Fi 7 ecosystem
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
This robust ecosystem includes high-performance Wi-Fi 7 wireless router modules including the flagship AW7995-AE1, equipped with the latest BE series chipset.

Read more...
5G RedCap: Unlocking scalable IoT connectivity
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
As 2G and 3G networks rapidly sunset across the globe, the Internet of Things (IoT) market faces a critical challenge: how to maintain reliable cellular connectivity without the complexity or cost of full 5G.

Read more...
Introducing Inpai
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Antenova has launched Inpai, a new SMD cellular antenna designed for NB-IoT and CATM on 4G/LTE networks.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved